Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Double perovskites, a class of ceramic oxides with unique crystal structures and diverse physical properties, show promise for various technological applications including solar cells, photodetectors, and light-emitting diodes (LEDs). Despite limited research on rare earth-doped double perovskites, leveraging their ultrahigh luminous efficiency to achieve bright yellow LED emission and addressing energy transfer challenges between Yb and Nd ions in double perovskite LaZnTiO with moderate phonon energy are explored in this work. Through phonon-assisted energy transfer, an ultrasensitive optical thermometer covering a wide temperature range is developed by utilizing the different temperature responses of Er emission in the visible light region and Nd emission in the near-infrared region based on the luminescence intensity ratio (LIR). All the results demonstrate that the rare earth (Yb-Er, Yb-Nd, and Yb-Nd-Er)-doped LaZnTiO phosphors can be effectively utilized for ultrabright LED illumination and ultrahigh sensitivity self-calibrated temperature sensing. This research underscores the significance of phonon-assisted energy transfer in improving material properties and provides valuable insights for the advancement of multifunctional materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c01929 | DOI Listing |