Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Grazing exclusion (GE), as an effective strategy for revitalizing degraded grasslands, possesses the potential to increase ecosystem respiration (R) and significantly influence the capacity of grassland soils to sequester carbon. However, our current grasp of R dynamics in response to varying durations of GE, particularly in the context of precipitation fluctuations, remains incomplete. To fill this knowledge gap, we conducted a monitoring of R over a 40-year GE chronosequence within Inner Mongolia temperate typical steppe across two distinct hydrologically years. Overall, R exhibited a gradual saturation curve and an increasing trend with the duration of GE in the wet year of 2021 and the normal precipitation year of 2022, respectively. The variance primarily stemmed from relatively higher microbial biomass carbon observed in the short-term GE during 2022 in contrast to 2021. Moreover, the impacts of GE on the sensitivities of R to moisture and temperature were intricately tied to precipitation patterns. increasing significantly with prolonged GE duration in 2022 but not in 2021. Our study highlights the intricate interplay between GE duration, precipitation variability, and R dynamics. This deeper understanding enhances our ability to predict and manage carbon cycling within typical steppe in Inner Mongolia, offering invaluable insights for effective restoration strategies and climate change mitigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.121775 | DOI Listing |