Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The inorganic perovskite CsPbI shows promising photophysical properties for a range of potential optoelectronic applications but is metastable at room temperature. To address this, Br can be alloyed into the X-site to create compositions such as CsPbIBr that are stable at room temperature but have bandgaps >1.9 eV - severely limiting solar applications. Herein, in an effort to achieve phase stable films with bandgaps <1.85 eV, we investigate alloying chlorine into iodine-rich triple-halide CsPb(IBr Cl ) with 0 < < 0.1. We show that partial substitution of iodine with bromine and chlorine provides a path to maintain broadband terrestrial absorption while improving upon the perovskite phase stability due to chlorine's smaller size and larger ionization potential than bromine. At moderate Cl loading up to ≈5%, X-ray diffraction reveals an increasingly smaller orthorhombic unit cell, suggesting chlorine incorporation into the lattice. Most notably, this Cl incorporation is accompanied by a significant enhancement over Cl-free controls in the duration of black-phase stability of up to 7× at elevated temperatures. Additionally, we observe up to 5× increased steady state photoluminescence intensity (PL), along with a small blue-shift. In contrast, at high loading (≈10%), Cl accumulates in a second phase that is visible at grain boundaries synchrotron fluorescence microscopy and negatively impacts the perovskite phase stability. Thus, replacing small fractions of bromine for chlorine in the iodine-rich inorganic perovskite lattice results in distinct improvement thermal stability and optoelectronic quality while minimally impacting the bandgap.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11235055PMC
http://dx.doi.org/10.1039/d4ra04348kDOI Listing

Publication Analysis

Top Keywords

room temperature
8
alloying improves
4
improves thermal
4
thermal stability
4
stability increases
4
increases luminescence
4
luminescence iodine-rich
4
iodine-rich inorganic
4
inorganic perovskites
4
perovskites inorganic
4

Similar Publications

Conventional gelatin's gel-to-sol transition upon heating restricts its utility in biomedical applications that benefit from a gel state at physiological temperatures such as Pluronic F127 and poly(NIPAAm). Herein, we present "rev-Gelatin", a gelatin engineered with reverse thermo-responsive properties that undergoes a sol-to-gel transition as temperature rises from ambient to body temperature. Inspired by the phase dynamics of common materials like candy and ice cubes, whose surfaces soften or partially melt under warming, facilitating inter-object adhesion- rev-Gelatin leverages this concept to achieve fluidity at room temperature for easy injectability.

View Article and Find Full Text PDF

Polariton Spin Separation and Propagation by Rashba-Dresselhaus Spin-Orbit Coupling in an Anisotropic Two-Dimensional Perovskite Microcavity.

Nano Lett

September 2025

Key Laboratory of Micro & Nano Photonic Structures, Department of Optical Science and Engineering, College of Future Information Technology, Fudan University, Shanghai 200433, China.

The separation and propagation of spin are vital to understanding spin-orbit coupling (SOC) in quantum systems. Exciton-polaritons, hybrid light-matter quasiparticles, offer a promising platform for investigating SOC in quantum fluids. By utilization of the optical anisotropy of materials, Rashba-Dresselhaus SOC (RDSOC) can be generated, enabling robust polariton spin transport.

View Article and Find Full Text PDF

Some Factors Influencing the Number of Spores Detected in Hospital Wastewater.

Infect Drug Resist

September 2025

Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan.

Objective: is the most common cause of antibiotic-associated diarrhea. Wastewater from hospitals may be an important source of transmission between hospitals and communities. The objective of this study is to quantify spores and to elucidate their potential transmission risk via hospital wastewater.

View Article and Find Full Text PDF

Cyclization-enhanced photoactivatable reversible room-temperature phosphorescence for efficient real-time light printing.

Chem Sci

August 2025

State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 China +86

The construction of polymer-based photoactivated room-temperature phosphorescence systems remains a prominent research focus, yet the development of ultrafast activated systems under ambient conditions continues to pose a challenge. In this study, cyclized phenothiazine derivatives bearing diverse substituents are synthesized and incorporated into an amorphous polyvinyl alcohol (PVA) matrix, resulting in significantly enhanced dynamic photoactivation characteristics compared with those of their pristine monomeric counterparts. Under ambient conditions and 2 s irradiation, the lifetime and quantum yield of C[4]PTZ-OH@PVA increase by factors of 1.

View Article and Find Full Text PDF

Quality changes in thermally-treated stingless bee honey during room temperature storage.

Food Sci Biotechnol

October 2025

Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Andalas, Padang, 25163 Indonesia.

This study examined quality changes in () stingless bee honey subjected to thermal treatment and stored at room temperature. Honey was heated at 55, 75, and 90 °C for 10 or 20 min and then stored at 30 °C for 40 days. Physicochemical parameters including moisture content, total soluble solids (TSS), pH, acidity, viscosity, hydroxymethylfurfural (HMF), color (L*, a*, b*), antioxidant activity, and total phenolic content were analyzed.

View Article and Find Full Text PDF