Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose Of Review: Environmental chemical exposures may disrupt child development, with long-lasting health impacts. To date, U.S. studies of early environmental exposures have been limited in size and diversity, hindering power and generalizability. With harmonized data from over 60,000 participants representing 69 pregnancy cohorts, the National Institutes of Health's Environmental influences on Child Health Outcomes (ECHO) Program is the largest study of U.S. children's health. Here, we: (1) review ECHO-wide studies of chemical exposures and maternal-child health; and (2) outline opportunities for future research using ECHO data.

Recent Findings: As of early 2024, in addition to over 200 single-cohort (or award) papers on chemical exposures supported by ECHO, ten collaborative multi-cohort papers have been made possible by ECHO data harmonization and new data collection. Multi-cohort papers have examined prenatal exposure to per- and polyfluoroalkyl substances (PFAS), phthalates, phenols and parabens, organophosphate esters (OPEs), metals, melamine and aromatic amines, and emerging contaminants. They have primarily focused on describing patterns of maternal exposure or examining associations with maternal and infant outcomes; fewer studies have examined later child outcomes (e.g., autism) although follow up of enrolled ECHO children continues. The NICHD's Data and Specimen Hub (DASH) database houses extensive ECHO data including over 470,000 chemical assay results and complementary data on priority outcome areas (pre, peri-, and postnatal, airway, obesity, neurodevelopment, and positive health), making it a rich resource for future analyses. ECHO's extensive data repository, including biomarkers of chemical exposures, can be used to advance our understanding of environmental influences on children's health. Although few published studies have capitalized on these unique harmonized data to date, many analyses are underway with data now widely available.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324705PMC
http://dx.doi.org/10.1007/s40572-024-00456-5DOI Listing

Publication Analysis

Top Keywords

chemical exposures
20
environmental influences
12
data
9
exposures maternal-child
8
health
8
maternal-child health
8
influences child
8
child health
8
health outcomes
8
outcomes echo
8

Similar Publications

Physicochemical Property Models for Poly- and Perfluorinated Alkyl Substances and Other Chemical Classes.

J Chem Inf Model

September 2025

United States Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, North Carolina 27711, United States.

To assess environmental fate, transport, and exposure for PFAS (per- and polyfluoroalkyl substances), predictive models are needed to fill experimental data gaps for physicochemical properties. In this work, quantitative structure-property relationship (QSPR) models for octanol-water partition coefficient, water solubility, vapor pressure, boiling point, melting point, and Henry's law constant are presented. Over 200,000 experimental property value records were extracted from publicly available data sources.

View Article and Find Full Text PDF

Computational modeling for PPE filtration: Informed by material characterization, microbial penetration, and particle mechanics.

J Occup Environ Hyg

September 2025

Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, US Food and Drug Administration (FDA), Oak Ridge, Tennessee.

This work assesses the current characterization framework of single-use personal protective equipment (PPE) per recognized consensus standards and presents a novel quantitative approach to refining characterization of barrier materials and predicting PPE performance. Scanning electron microscopy (SEM) and image analysis software (Diameter J) were used to examine the microscopic fiber and pore structure of filter layers of surgical N95 filtering facepiece respirators, before and after exposure to chemicals used in decontamination modalities (vaporized hydrogen peroxide or ozone). The effect of porosity on penetration was assessed by bacterial filtration efficiency (BFE) testing.

View Article and Find Full Text PDF

Bimorph Soft Actuators Based on Isostructural Heterogeneous Janus Films.

ACS Nano

September 2025

State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

Bimorph soft actuators, traditionally composed of two materials with distinct responses to external stimuli, often face durability challenges due to structural incompatibility. Here, we propose an alternative design employing free-standing, isostructural heterogeneous Janus (IHJ) films that harmonize stability with high actuation efficiency. These IHJ films were fabricated through a vacuum self-assembly process, consisting of TiCT MXene nanosheets and hybrid graphene oxide (GO)-biomass bacterial cellulose (BC), with a well-matched two-dimensional lattice structure.

View Article and Find Full Text PDF

Erythrina velutina is a tree that thrives in the shallow rocky soils of the dry and hot Caatinga, a unique Brazilian biome. It is rich in specialized metabolites with medicinal properties. Indeed, alkaloids and flavonoids are phytochemical markers of the genus.

View Article and Find Full Text PDF

The streams of Alaska's Brooks Range lie within a vast (~14M ha) tract of protected wilderness and have long supported both resident and anadromous fish. However, dozens of historically clear streams have recently turned orange and turbid. Thawing permafrost is thought to have exposed sulfide minerals to weathering, delivering iron and other potentially toxic metals to aquatic ecosystems.

View Article and Find Full Text PDF