98%
921
2 minutes
20
Due to the increasing number of chemicals released into the environment, nontarget screening (NTS) analysis is a necessary tool for providing comprehensive chemical analysis of environmental pollutants. However, NTS workflows encounter challenges in detecting both known and unknown pollutants with common chromatography high-resolution mass spectrometry (HRMS) methods. Identification of unknowns is hindered by limited elemental composition information, and quantification without identical reference standards is prone to errors. To address these issues, we propose the use of inductively coupled plasma mass spectrometry (ICP-MS) as an element-specific detector. ICP-MS can enhance the confidence of compound identification and improve quantification in NTS due to its element-specific response and unambiguous chemical composition information. Additionally, mass balance calculations for individual elements (F, Br, Cl, etc.) enable assessment of total recovery of those elements and evaluation of NTS workflows. Despite its benefits, implementing ICP-MS in NTS analysis and environmental regulation requires overcoming certain shortcomings and challenges, which are discussed herein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271004 | PMC |
http://dx.doi.org/10.1021/acs.est.4c00504 | DOI Listing |
PLoS Negl Trop Dis
September 2025
Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
Background: Salmonella enterica encompasses over 2,600 serovars, including several commonly associated with severe infection in humans. Salmonella is a major cause of sepsis in Africa; however, diagnosis requires clinical microbiology facilities. Environmental surveillance has the potential to play a role in Salmonella surveillance.
View Article and Find Full Text PDFPLoS One
September 2025
Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.
Zygotes are used to create genetically modified animals by electroporation using the CRISPR-Cas9 system. Such zygotes in rats are obtained from superovulated female rats after mating. Recently, we reported that in vivo-fertilized zygotes had higher cryotolerance and developmental ability than in vitro-fertilized zygotes in Sprague Dawley (SD) and Fischer 344 rats.
View Article and Find Full Text PDFJ Integr Neurosci
August 2025
Department of Neurobiology, Hebei Medical University, 050017 Shijiazhuang, Hebei, China.
Background: Sodium homeostasis is crucial for physiological balance, yet the neurobiological mechanisms underlying sodium appetite remain incompletely understood. The nucleus tractus solitarii (NTS) integrates visceral signals to regulate feeding behaviors, including sodium intake. This study investigated the role of 11β-hydroxysteroid dehydrogenase type 2 (HSD2)-expressing neurons in the NTS in mediating sodium appetite under low-sodium diet (LSD) conditions and elucidated the molecular pathways involved, particularly the cyclic adenosine monophosphate (cAMP)/mitogen-activated protein kinase (MAPK) signaling cascade.
View Article and Find Full Text PDFIISE Trans Occup Ergon Hum Factors
September 2025
Department of Industrial Engineering, Clemson University, Clemson, SC, USA.
Occupational ApplicationsThe analysis of communication, attention, and cognitive engagement relative to leadership and non-technical skills (NTS) is important for understanding the team dynamic within clinical settings. We found negative correlations between passive communication (receiving information instead of dictating information) and leadership scores, suggesting that passive leadership traits lead to weaker technical leadership performance. Additionally, continuously sharing goals and providing affirmations to patients had positive relationships with leadership scores.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States.
is a leading cause of foodborne illness in the United States and worldwide. This enteric pathogen deploys various mechanisms to evade the intestinal mucosal barrier to enhance its survival and further infect systemic tissues. Commercially available vaccines against are currently restricted to the serovar Typhi, while none are currently approved for non-typhoidal (NTS) serovars, which are becoming increasingly resistant to antibiotics.
View Article and Find Full Text PDF