98%
921
2 minutes
20
Freshwater ecosystems host disproportionately high biodiversity and provide unique ecosystem services, yet they are being degraded at an alarming rate. Fires, which are becoming increasingly frequent and intense due to global change, can affect these ecosystems in many ways, but this relationship is not fully understood. We conducted a systematic review to characterize the literature on the effects of fires on stream ecosystems and found that (1) abiotic indicators were more commonly investigated than biotic ones, (2) most previous research was conducted in North America and in the temperate evergreen forest biome, (3) following a control-impact (CI) or before-after (BA) design, (4) predominantly assessing wildfires as opposed to prescribed fires, (5) in small headwater streams, and (6) with a focus on structural and not functional biological indicators. After quantitatively analyzing previous research, we detected great variability in responses, with increases, decreases, and no changes being reported for most indicators (e.g., macroinvertebrate richness, fish density, algal biomass, and leaf decomposition). We shed light on these seemingly contradicting results by showing that the presence of extreme hydrological post-fire events, the time lag between fire and sampling, and whether the riparian forest burned or not influenced the outcome of previous research. Results suggest that although wildfires and the following hydrological events can have dramatic impacts in the short term, most biological endpoints recover within 5-10 years, and that detrimental effects are minimal in the case of prescribed fires. We also detected that no effects were more often reported by BACI studies than by CI or BA studies, raising the question of whether this research field may be biased by the inherent limitations of CI and BA designs. Finally, we make recommendations to help advance this field of research and guide future integrated fire management that includes the protection of freshwater ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.17389 | DOI Listing |
J Environ Manage
September 2025
College of chemistry and chemical Engineering, Ocean University of China, Qingdao, China. Electronic address:
Tidal estuaries serve as critical zones for biogeochemical connectivity between terrestrial and oceanic ecosystems. With climate change magnifying the impact of flood events on riverine system, dissolved organic matter (DOM) cycling, the largest reactive elemental pool in ecosystems, in tidal estuaries tend to be more complex and remain poorly understood. To address this gap, the response of DOM dynamics to flood events in a typical tidal estuary was explored.
View Article and Find Full Text PDFUnderstanding the spatial distribution of rare species is fundamental to biodiversity conservation. The black-necked crane (), a flagship species of alpine wetlands and a first-class nationally protected species in China, serves as an important indicator for ecosystem health. Based on the had data and ecological environment data, this study used the Maximum Entropy model (MaxEnt) and Random Forest model (RF) to predict the suitable distribution area of the black-necked crane.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
Grupo de Saneamiento Ambiental, Facultad de Ingeniería, Escuela de Ingeniería de Recursos Naturales y del Ambiente, Universidad del Valle, Calle13 #100-00, 76001, Santiago de Cali, Colombia.
The presence of pharmaceuticals in water poses emerging environmental risks to aquatic ecosystems and potentially human health. This study investigates the occurrence and ecological threat of antiepileptic drugs and lipid-lowering agents in surface water, specifically in the Cauca River, one of the most important rivers in Colombia. Quantification was conducted using liquid chromatography coupled with mass spectrometry.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Colorado State University, Department of Forest and Rangeland Stewardship, Fort Collins, CO 80523.
The streams of Alaska's Brooks Range lie within a vast (~14M ha) tract of protected wilderness and have long supported both resident and anadromous fish. However, dozens of historically clear streams have recently turned orange and turbid. Thawing permafrost is thought to have exposed sulfide minerals to weathering, delivering iron and other potentially toxic metals to aquatic ecosystems.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Integrative Biology, University of California, Berkeley, CA 94720-3140.
Microscale symbioses can be critical to ecosystem functions, but the mechanisms of these interactions in nature are often cryptic. Here, we use a combination of stable isotope imaging and tracing to reveal carbon (C) and nitrogen (N) exchanges among three symbiotic primary producers that fuel a salmon-bearing river food web. Bulk isotope analysis, nanoSIMS (secondary ion mass spectrometry) isotope imaging, and density centrifugation for quantitative stable isotope probing enabled quantification of organism-specific C- and N-fixation rates from the subcellular scale to the ecosystem.
View Article and Find Full Text PDF