A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A contrast-enhanced computed tomography-based radiomics nomogram for preoperative differentiation between benign and malignant cystic renal lesions. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: There is lack of discrimination as to traditional imaging diagnostic methods of cystic renal lesions (CRLs). This study aimed to evaluate the value of machine learning models based on clinical data and contrast-enhanced computed tomography (CECT) radiomics features in the differential diagnosis of benign and malignant CRL.

Methods: There were 192 patients with CRL (Bosniak class ≥ II) enrolled through histopathological examination, including 144 benign cystic renal lesions (BCRLs) and 48 malignant cystic renal lesions (MCRLs). Radiomics features were extracted from CECT images taken during the medullary phase. Using the light gradient boosting machine (LightGBM) algorithm, the clinical, radiomics and combined models were constructed. A comprehensive nomogram was developed by integrating the radiomics score (Rad-score) with independent clinical factors. Receiver operating characteristic (ROC) curves were plotted. The corresponding area under the curve (AUC) value was worked out to quantify the discrimination performance of the three models in training and validation cohorts. Calibration curves were worked out to assess the accuracy of the probability values predicted by the models. Decision curve analysis (DCA) was worked out to assess the performance of models at different thresholds.

Results: Maximum diameter and Bosniak class were independent risk factors of patients with MCRL in the clinical model. Twenty-one radiomics features were extracted to work out a Rad-score. The performance of the clinical model in the training cohort was AUC =0.948, 95% confidence interval (CI): 0.917-0.980, and the performance in the validation cohort was AUC =0.936, 95% CI: 0.859-1.000 (P<0.05). The performance of the radiomics model in the training cohort was AUC =0.990, 95% CI: 0.979-1.000, and the performance in the validation cohort was AUC =0.959, 95% CI: 0.903-1.000 (P<0.05). Compared with the above models, the combined radiomics nomogram had an AUC of 0.989 (95% CI: 0.977-1.000) in the training cohort and an AUC of 0.962 (95% CI: 0.905-1.000) in the validation cohort (P<0.05), showing the best diagnostic efficacy.

Conclusions: The radiomics nomogram integrating clinical independent risk factors and radiomics signature improved the diagnostic accuracy in differentiating between BCRL and MCRL, which can provide a reference for clinical decision-making and help clinicians develop individualized treatment strategies for patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228685PMC
http://dx.doi.org/10.21037/tau-23-656DOI Listing

Publication Analysis

Top Keywords

cystic renal
16
renal lesions
16
radiomics features
12
contrast-enhanced computed
8
benign malignant
8
malignant cystic
8
bosniak class
8
features extracted
8
worked assess
8
clinical model
8

Similar Publications