98%
921
2 minutes
20
Hepatocellular carcinoma (HCC) mortality rates continue to increase faster than those of other cancer types due to high heterogeneity, which limits diagnosis and treatment. Pathological and molecular subtyping have identified that HCC tumors with poor outcomes are characterized by intratumoral collagenous accumulation. However, the translational and post-translational regulation of tumor collagen, which is critical to the outcome, remains largely unknown. Here, we investigate the spatial extracellular proteome to understand the differences associated with HCC tumors defined by Hoshida transcriptomic subtypes of poor outcome (Subtype 1; S1; = 12) and better outcome (Subtype 3; S3; = 24) that show differential stroma-regulated pathways. Collagen-targeted mass spectrometry imaging (MSI) with the same-tissue reference libraries, built from untargeted and targeted LC-MS/MS was used to spatially define the extracellular microenvironment from clinically-characterized, formalin-fixed, paraffin-embedded tissue sections. Collagen α-1(I) chain domains for discoidin-domain receptor and integrin binding showed distinctive spatial distribution within the tumor microenvironment. Hydroxylated proline (HYP)-containing peptides from the triple helical regions of fibrillar collagens distinguished S1 from S3 tumors. Exploratory machine learning on multiple peptides extracted from the tumor regions could distinguish S1 and S3 tumors (with an area under the receiver operating curve of ≥0.98; 95% confidence intervals between 0.976 and 1.00; and accuracies above 94%). An overall finding was that the extracellular microenvironment has a high potential to predict clinically relevant outcomes in HCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385377 | PMC |
http://dx.doi.org/10.1021/acs.jproteome.4c00099 | DOI Listing |
Development
September 2025
Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA.
Organ initiation is often driven by extracellular signaling molecules that activate precursor cells competent to receive and respond to a given signal, yet little is known about the dynamics of competency in space and time during development. Teeth are excellent organs to study cellular competency because they can be activated with the addition of a single signaling ligand, Ectodysplasin (Eda). To investigate the role of Eda in tooth specification, we generated transgenic sticklebacks and zebrafish with heat shock-inducible Eda overexpression.
View Article and Find Full Text PDFACS Chem Neurosci
September 2025
Chemical and Biomolecular Engineering Dept, University of California, Los Angeles, Los Angeles, California 90095, United States.
Simulations in three dimensions and time provide guidance on implantable, electroenzymatic glutamate sensor design; relative placement in planar sensor arrays; feasibility of sensing synaptic release events; and interpretation of sensor data. Electroenzymatic sensors based on the immobilization of oxidases on microelectrodes have proven valuable for the monitoring of neurotransmitter signaling in deep brain structures; however, the complex extracellular milieu featuring slow diffusive mass transport makes rational sensor design and data interpretation challenging. Simulations show that miniaturization of the disk-shaped device size below a radius of ∼25 μm improves sensitivity, spatial resolution, and the accuracy of glutamate concentration measurements based on calibration factors determined .
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
Intrinsic genetic alterations and dynamic transcriptional changes contribute to the heterogeneity of solid tumors. Lung adenocarcinoma (LUAD) is characterized by its significant histological, cellular and molecular heterogeneity. The present study aimed to study the spatial transcriptomics of primary LUAD with initial hopes to decipher molecular characteristics of subtype transitions in LUAD progression, offering new insights for novel therapeutic strategies.
View Article and Find Full Text PDFNanoscale
September 2025
Department of Bioengineering & Nano-Bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea.
Rolling circle amplification (RCA) has emerged as a highly versatile and robust isothermal amplification technology, offering exceptional sensitivity, specificity, and scalability for next-generation molecular diagnostics and multi-omics research. Its ability to generate long, repetitive DNA sequences with high fidelity has made it a pivotal tool in disease diagnostics, genomic analysis, and spatial transcriptome profiling. Recent advancements have expanded RCA into various formats, including solution-phase, solid-phase, hydrogel-based, and digital RCA, enhancing its analytical performance and adaptability across diverse biological applications.
View Article and Find Full Text PDFLab Invest
September 2025
Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan; Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan.
Ameloblastoma (AM) is a benign epithelial odontogenic tumor that occurs in the jawbone. Although benign, AM can exhibit aggressive features, including locally invasive growth. Additionally, local recurrence or distant metastasis may occur.
View Article and Find Full Text PDF