Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Tuning the selectivity of CO electroreduction reaction (CORR) solely by changing electrolyte is a very attractive topic. In this study, we conducted CORR in different aqueous electrolytes over bulk metal electrodes. It was discovered that controlled CORR could be achieved by modulating cations in the electrochemical double layer. Specifically, ionic liquid cations in the electrolyte significantly inhibits the hydrogen evolution reaction (HER), while yielding high Faraday efficiencies toward CO (FE) or formate (FE) depending on the alkali metal cations. For example, the product could be switched from CO (FE=97.3 %) to formate (FE=93.5 %) by changing the electrolyte from 0.1 M KBr-0.5 M 1-octyl-3-methylimidazolium bromide (OmimBr) to 0.1 M CsBr-0.5 M OmimBr aqueous solutions over pristine Cu foil electrode. In situ spectroscopy and theoretical calculations reveal that the ordered structure generated by the assembly of Omim under an applied negative potential alters the hydrogen bonding structure of the interfacial water, thereby inhibiting the HER. The difference in selectivity in the presence of different cations is attributed to the hydrogen bonding effect caused by Omim, which alters the solvated structure of the alkali metal cations and thus affects the stabilization of intermediates of different pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202410145 | DOI Listing |