Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In systems and network neuroscience, many common practices in brain connectomic analysis are often not properly scrutinized. One such practice is mapping a predetermined set of sub-circuits, like functional networks (FNs), onto subjects' functional connectomes (FCs) without adequately assessing the information-theoretic appropriateness of the partition. Another practice that goes unchallenged is thresholding weighted FCs to remove spurious connections without justifying the chosen threshold. This paper leverages recent theoretical advances in Stochastic Block Models (SBMs) to formally define and quantify the information-theoretic fitness (e.g., prominence) of a predetermined set of FNs when mapped to individual FCs under different fMRI task conditions. Our framework allows for evaluating any combination of FC granularity, FN partition, and thresholding strategy, thereby optimizing these choices to preserve important topological features of the human brain connectomes. By applying to the Human Connectome Project with Schaefer parcellations at multiple levels of granularity, the framework showed that the common thresholding value of 0.25 was indeed information-theoretically valid for group-average FCs despite its previous lack of justification. Our results pave the way for the proper use of FNs and thresholding methods and provide insights for future research in individualized parcellations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230349PMC

Publication Analysis

Top Keywords

information-theoretic fitness
8
predetermined set
8
principled framework
4
framework assess
4
assess information-theoretic
4
fitness brain
4
brain functional
4
functional sub-circuits
4
sub-circuits systems
4
systems network
4

Similar Publications

In systems and network neuroscience, many common practices in brain connectomic analysis are often not properly scrutinized. One such practice is mapping a predetermined set of sub-circuits, like functional networks (FNs), onto subjects' functional connectomes (FCs) without adequately assessing the information-theoretic appropriateness of the partition. Another practice that goes unchallenged is thresholding weighted FCs to remove spurious connections without justifying the chosen threshold.

View Article and Find Full Text PDF

Natural selection's power is beautifully illustrated by sex ratio variation that seems near-perfectly adapted. However, the fit of sex ratios to optimal predictions is usually tested in oversimplified ecological settings. This creates a one-sided view of evolution, where details are ignored, and evolution appears to produce optimal solutions.

View Article and Find Full Text PDF

During fertilization, mammalian sperm undergo a winnowing selection process that reduces the candidate pool of potential fertilizers from ~106-1011 cells to 101-102 cells (depending on the species). Classical sperm competition theory addresses the positive or 'stabilizing' selection acting on sperm phenotypes within populations of organisms but does not strictly address the developmental consequences of sperm traits among individual organisms that are under purifying selection during fertilization. It is the latter that is of utmost concern for improving assisted reproductive technologies (ART) because low-fitness sperm may be inadvertently used for fertilization during interventions that rely heavily on artificial sperm selection, such as intracytoplasmic sperm injection (ICSI).

View Article and Find Full Text PDF

Within biology, there have been long-standing goals to understand how traits impact fitness, determine the degree of adaptation, and predict responses to selection. One key step in answering these questions is to study the mode of gene action or genetic architecture of traits. The genetic architecture underlying a trait will ultimately determine whether selection can lead to a change in the phenotype.

View Article and Find Full Text PDF

Lingering legacies: Past growth and parental experience influence somatic growth in a fish population.

J Anim Ecol

October 2024

Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA.

Body size and growth rate can influence individual and population success by mediating fitness. Understanding the factors that influence growth can be difficult to disentangle, however, because growth can be shaped by environmental conditions recently experienced, as well as legacy effects from conditions experienced earlier in life and by parents (via parental effects). To improve understanding of growth among annual cohorts (1982-2015) of Lake Erie Walleye (Sander vitreus), a species with life-history and growth characteristics similar to many other long-lived, iteroparous fishes, we determined the role of the following hypothesised factors: (H1) recent environmental conditions; (H2) traits and experiences of the cohort, including growth, in the previous year; (H3) early-life cohort density; (H4) early-life body size; and (H5) parental composition and environment.

View Article and Find Full Text PDF