98%
921
2 minutes
20
Unraveling the signaling roles of intermediate complexes is pivotal for G protein-coupled receptor (GPCR) drug development. Despite hundreds of GPCR-Gαβγ structures, these snapshots primarily capture the fully activated complex. Consequently, the functions of intermediate GPCR-G protein complexes remain elusive. Guided by a conformational landscape visualized via F quantitative NMR and molecular dynamics (MD) simulation, we determined the structure of an intermediate GPCR-mini-Gαβγ complex at 2.8 Å using cryo-EM, by blocking its transition to the fully activated complex. Furthermore, we presented direct evidence that the intermediate complex initiates a rate-limited nucleotide exchange without progressing to the fully activated complex, in which the α-helical domain (AHD) of the Gα is partially open engaged by a second nucleotide. Our MD simulation supported the pose of the AHD domain. These advances bridge a significant gap in our understanding the complexity of GPCR signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230506 | PMC |
http://dx.doi.org/10.21203/rs.3.rs-4566652/v1 | DOI Listing |
FEBS J
September 2025
Neutron Scattering Division, Oak Ridge National Laboratory, USA.
Serine hydroxymethyltransferase (SHMT) is a critical enzyme in the one-carbon (1C) metabolism pathway catalyzing the reversible conversion of L-Ser into Gly and concurrent transfer of 1C unit to tetrahydrofolate (THF) to give 5,10-methylene-THF (5,10-MTHF), which is used in the downstream syntheses of biomolecules critical for cell proliferation. The cellular 1C metabolism is hijacked by many cancer types to support cancer cell proliferation, making SHMT a promising target for the design and development of novel small-molecule antimetabolite chemotherapies. To advance structure-assisted drug design, knowledge of SHMT catalysis is crucial, but can only be fully realized when the atomic details of each reaction step governed by the acid-base catalysis are elucidated by visualizing active site hydrogen atoms.
View Article and Find Full Text PDFMol Oncol
September 2025
Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
Prostate cancer (PCa) is the second most lethal cancer in men in the US. African American (AA) men have twice the incidence and death rate of European American (EA) men. Advanced PCa shows increased expression and activity of the DNA damage/repair pathway enzyme, poly (ADP-ribose) polymerase 1 (PARP1).
View Article and Find Full Text PDFBest Pract Res Clin Endocrinol Metab
August 2025
Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel 4031, Switzerland; Department of Clinical Research, University Hospital Basel, University of Basel, Basel 4031, Switzerland; Department of Endocrinology and Diabetes, Cantonal Hospital Baselland, Switzerland. E
Chronic hyponatremia is increasingly recognized as a potential contributor to impaired bone health, although the underlying pathophysiological mechanisms have not yet been fully elucidated. Experimental studies have demonstrated that low serum sodium levels affect both osteoclast and osteoblast function, resulting primarily in increased bone resorption and secondarily in reduced bone formation. In humans, however, evidence regarding the effects of hyponatremia on bone remains limited.
View Article and Find Full Text PDFJ Lipid Res
September 2025
Department of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Center for Alimentary and Metabolic Science, University of California Davis School of Medicine, Sacramento, CA, USA. Electronic address:
Cyclopropane fatty acids (CpFAs) are members of the mammalian lipidome, originating from the diet and gut microbial metabolism. Despite being fully saturated, conformational modeling of CpFAs from C12 to C24 in length revealed that they are bent lipids sharing structural similarities with monounsaturated fatty acids (MUFAs). We therefore hypothesized that CpFAs might share some bioactivities with MUFAs.
View Article and Find Full Text PDFProg Biophys Mol Biol
September 2025
Grupo de investigación en Química Teórica y Bioinformática, Department of Chemistry, Universidad de Caldas, Cl. 65 # 26-10, Manizales, Colombia.
The primary objective of this review is to analyze primary research published over the past six years concerning cyclic nucleotide-gated calcium channels (CNGC) in plants. The aim is to structure this information to identify and organize existing knowledge regarding their tertiary and quaternary structures, as well as the activation mechanisms of CNGC. Studies on plant CNGC published between January 2018 and May 2025 were included, while research focused on animals, bacteria, or ions other than calcium was excluded.
View Article and Find Full Text PDF