98%
921
2 minutes
20
Cytometry plays a crucial role in characterizing cell properties, but its restricted optical window (400-850 nm) limits the number of stained fluorophores that can be detected simultaneously and hampers the study and utilization of short-wave infrared (SWIR; 900-1700 nm) fluorophores in cells. Here we introduce two SWIR-based methods to address these limitations: SWIR flow cytometry and SWIR image cytometry. We develop a quantification protocol for deducing cellular fluorophore mass. Both systems achieve a limit of detection of ∼0.1 fg cell within a 30 min experimental time frame, using individualized, high-purity (6,5) single-wall carbon nanotubes as a model fluorophore and macrophage-like RAW264.7 as a model cell line. This high-sensitivity feature reveals that low-dose (6,5) serves as an antioxidant, and cell morphology and oxidative stress dose-dependently correlate with (6,5) uptake. Our SWIR cytometry holds immediate applicability for existing SWIR fluorophores and offers a solution to the issue of spectral overlapping in conventional cytometry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256901 | PMC |
http://dx.doi.org/10.1021/acsnano.4c04345 | DOI Listing |
Small Sci
September 2025
Infrared photodetectors are crucial for autonomous driving, providing reliable object detection under challenging lighting conditions. However, conventional silicon-based devices are limited in their responsivity beyond 1100 nm. Here, a scallop-structured silicon photodetector integrated with tin-substituted perovskite quantum dots (PQDs) that effectively extends infrared detection is demonstrated.
View Article and Find Full Text PDFNanotechnology
September 2025
Department of Electrical and Computer Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey, 07102, UNITED STATES.
Uncooled mid-wave infrared (MWIR) image sensors, which are compact, lightweight, and energy-efficient, are expected to take a dominant position in the future infrared market. As an alternative to traditional epitaxially-grown infrared semiconductors used in high-performance cryo-cooled MWIR imagers, the concept of hybrid sensor materials is gaining attention. Specifically, hybrid structures combining two-dimensional (2D) materials, known for their superior carrier transport properties, with colloidal quantum dots (QDs), which offer excellent optical properties, have shown record-high room-temperature infrared responsivities with spectral responses extending to short-wave infrared (SWIR).
View Article and Find Full Text PDFACS Nano
September 2025
IMEC, Kapeldreef 75, 3001 Leuven, Belgium.
Heavy-metal-free III-V semiconductor-based colloidal quantum dots (CQDs), such as InAs, are promising candidates for near- and short-wave infrared detection. However, up-to-date research efforts remain mainly limited to wavelengths below 1100 nm due to challenges in synthesis, junction formation, and passivation for large diameter InAs quantum dots. Systematic investigations into device design, reverse dark current mechanisms, and trap distributions in larger InAs quantum dots remain limited.
View Article and Find Full Text PDFSci Rep
September 2025
Faculty of Physics, University of Tabriz, Tabriz, 51665-163, Iran.
Recent advances in nanostructured photodetectors have enabled precise control over light absorption while minimizing photon losses. In this work, we demonstrate a plasmonic metamaterial absorber based on two-dimensional MXene (Ti₃C₂Tₓ) featuring geometrically tunable tetragram-shaped arrays. Through finite-difference time-domain (FDTD) simulations and structural optimization, we achieved over 90% photon absorption across the broadband spectral range of 1000-2500 nm, representing a significant enhancement in operational bandwidth.
View Article and Find Full Text PDFNano Lett
September 2025
School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, People's Republic of China.
Solution-processed PbSe colloidal quantum dots (CQDs) are promising candidates for building high-performance infrared photodetectors due to their widely tunable band gaps and high carrier mobility. However, the development of PbSe CQD photodetectors has been hampered by their poor electronic properties. In this work, a monomer-assisted ligand exchange (MLE) strategy was developed that leads to PbSe CQDs with improved electronic properties including increased carrier mobility, extended carrier lifetime, and enhanced electronic uniformity.
View Article and Find Full Text PDF