Identifying novel data-driven subgroups in congenital heart disease using multi-modal measures of brain structure.

Neuroimage

Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Institute of Medical Science, University of

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Individuals with congenital heart disease (CHD) have an increased risk of neurodevelopmental impairments. Given the hypothesized complexity linking genomics, atypical brain structure, cardiac diagnoses and their management, and neurodevelopmental outcomes, unsupervised methods may provide unique insight into neurodevelopmental variability in CHD. Using data from the Pediatric Cardiac Genomics Consortium Brain and Genes study, we identified data-driven subgroups of individuals with CHD from measures of brain structure. Using structural magnetic resonance imaging (MRI; N = 93; cortical thickness, cortical volume, and subcortical volume), we identified subgroups that differed primarily on cardiac anatomic lesion and language ability. In contrast, using diffusion MRI (N = 88; white matter connectivity strength), we identified subgroups that were characterized by differences in associations with rare genetic variants and visual-motor function. This work provides insight into the differential impacts of cardiac lesions and genomic variation on brain growth and architecture in patients with CHD, with potentially distinct effects on neurodevelopmental outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2024.120721DOI Listing

Publication Analysis

Top Keywords

brain structure
12
data-driven subgroups
8
congenital heart
8
heart disease
8
measures brain
8
neurodevelopmental outcomes
8
identified subgroups
8
brain
5
identifying novel
4
novel data-driven
4

Similar Publications

Wild-type p53 overexpression in -mutated acute myeloid leukemia: potential implications for disease biology and therapy response.

Haematologica

September 2025

Division of Hematopathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/NewYork-Presbyterian Hospital, New York, NY; Multiparametric In Situ Imaging (MISI) Laboratory, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York.

Not available.

View Article and Find Full Text PDF

Neck flexion weakness predicts respiratory dysfunction in amyotrophic lateral sclerosis.

Amyotroph Lateral Scler Frontotemporal Degener

September 2025

Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia.

: Neck flexion (NF) weakness is a frequently observed clinical feature in amyotrophic lateral sclerosis (ALS), particularly in advanced disease. The aim of the present study was to assess whether NF weakness could be a clinical biomarker for development of respiratory dysfunction. : Sixty-two ALS patients were prospectively recruited at Brain and Nerve Research Center.

View Article and Find Full Text PDF

Timing Matters: How Daily Rhythms Affect Remote Ischemic Postconditioning Therapy for Stroke.

Stroke

September 2025

Departments of Radiology and Neurology, Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston (E.L., R.M.P., K.H., E.H.L., E.E.).

Background: Despite promising preclinical results, remote limb ischemic postconditioning efficacy in human stroke treatment remains unclear, with mixed clinical trial outcomes. A potential reason for translational difficulties could be differences in circadian rhythms between nocturnal rodent models and diurnal humans.

Methods: Male C57BL/6J mice were subjected to transient focal cerebral ischemia and then exposed to remote postconditioning during their active or inactive phase and euthanized at 24 hours and 3 days.

View Article and Find Full Text PDF

Persisting Lyme Disease in the Pediatric Population.

Clin Pediatr (Phila)

September 2025

Department of Medicine (Infectious Disease), University of Connecticut Health Center, Boston University Medical Center, Falmouth Hospital, Falmouth, MA, USA.

A total of 101 patients with a clinical picture of persisting Lyme disease seen at the University of Connecticut Health Center and Boston Medical Center were recruited for the study to determine whether persistent infection is the likely cause. Brain SPECT imaging and responses to antibiotic treatments were recorded. Patients had more than 5 symptoms lasting more than 6 months.

View Article and Find Full Text PDF