Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Off-targeting toxicity and immunosuppressive tumor microenvironment still restrict the therapeutic requirement of photodynamic therapy (PDT). The development of metal ion-coordination-based nanoparticles (NPs) for cancer therapy has advantages, such as precious nanostructure and potent therapeutic effect as well as great safety. In this study, we prepared calcium ions (Ca)-coordination photosensitizer NPs, based on Ca-pyrochloric acid (PPA)-coordination as the new photosensitive nanoamplifiers, and microneedles (MNs) as the personalized apparatus, and investigated the nanoamplifiers for treating the melanoma via transdermal administration. This nanoamplifiers was synthesized via a simple coordination of Ca and PPA with the addition of bovine serum albumin (BSA), and further fabricated into MNs (nanoamplifiers@MNs). Following inserted into the tumor, the released nanoamplifiers from the tips and back layer exhibited great photodynamic activity under irradiation, inducing cancer cell death. Meanwhile, Ca acted as the second messenger, promoting M1 polarization of macrophages and maturation of dendritic cells (DCs), thereby enhancing the immune activation effect in the tumor microenvironment. As a result, such nanoamplifiers effectively achieved significant efficacy against malignant melanoma tumors by synergistically tumor killing and potent anti-tumor immune activation without obviously side effect. This work demonstrated the potential of MNs-mediated metal ion-coordination-based nanoamplifier as a novel photodynamic therapeutic platform for the efficient and safe treatment of cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2024.117063 | DOI Listing |