Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Coronary computed angiography (CCTA) with non-invasive fractional flow reserve (FFR) calculates lesion-specific ischemia when compared with invasive FFR and can be considered for patients with stable chest pain and intermediate-grade stenoses according to recent guidelines. The objective of this study was to compare a new CCTA-based artificial-intelligence deep-learning model for FFR prediction (FFR) to computational fluid dynamics CT-derived FFR (FFR) in patients with intermediate-grade coronary stenoses with FFR as reference standard. The FFR model was trained with curved multiplanar-reconstruction CCTA images of 500 stenotic vessels in 413 patients, using FFR measurements as the ground truth. We included 37 patients with 39 intermediate-grade stenoses on CCTA and invasive coronary angiography, and with FFR and FFR measurements in this retrospective proof of concept study. FFR was compared with FFR regarding the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy for predicting FFR ≤ 0.80. Sensitivity, specificity, PPV, NPV, and diagnostic accuracy of FFR in predicting FFR ≤ 0.80 were 91% (10/11), 82% (23/28), 67% (10/15), 96% (23/24), and 85% (33/39), respectively. Corresponding values for FFR were 82% (9/11), 75% (21/28), 56% (9/16), 91% (21/23), and 77% (30/39), respectively. Diagnostic accuracy did not differ significantly between FFR and FFR (p = 0.12). FFR performed similarly to FFR for predicting intermediate-grade coronary stenoses with FFR ≤ 0.80. These findings suggest FFR as a potential non-invasive imaging tool for guiding therapeutic management in these stenoses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473557PMC
http://dx.doi.org/10.1007/s10554-024-03173-0DOI Listing

Publication Analysis

Top Keywords

ffr
20
ffr ffr
12
diagnostic accuracy
12
coronary angiography
8
computational fluid
8
fluid dynamics
8
intermediate-grade stenoses
8
patients intermediate-grade
8
intermediate-grade coronary
8
coronary stenoses
8

Similar Publications

Importance: Right anomalous aortic origin of a coronary artery (R-AAOCA) is a rare congenital condition increasingly diagnosed with the growing use of cardiac imaging. Due to dynamic compression of the anomalous vessel, invasive fractional flow reserve (FFR) during a dobutamine-atropine volume challenge (FFR-dobutamine) is considered the reference standard. A reliable alternative method is needed to reduce extensive invasive testing, but it remains uncertain whether noninvasive imaging can accurately assess the hemodynamic relevance of R-AAOCA.

View Article and Find Full Text PDF

Validation of angiography-based FFR in non-culprit vessels of patients presenting with STEMI.

Clin Res Cardiol

September 2025

Department of (Interventional) Cardiology, Thoraxcenter, Erasmus University Medical Center, Room Rg-628, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands.

Background: Fractional flow reserve (FFR) for non-culprit lesions (NCLs) in patients with ST-elevation myocardial infarction (STEMI) can be influenced by temporary changes in microvascular resistance. Angiography-derived vessel fractional flow reserve (vFFR) has been tested as a less-invasive alternative.

Aims: The FAST STEMI II study aimed to assess the diagnostic performance of acute-setting vFFR vs.

View Article and Find Full Text PDF

Background: Invasive coronary physiology including fractional flow reserve (FFR), instantaneous wave-free ratio (iFR), and coronary flow reserve (CFR) are guideline-endorsed tools to guide the management of coronary artery disease (CAD). Complex factors impact and confound these assessments, and discordance between modalities complicates clinical management. iEquate is a prospective observational trial that combines multi-modality coronary physiology and optical coherence tomography (OCT) to identify the determinants of pressure-wire derived myocardial ischemia and iFR-FFR discordance.

View Article and Find Full Text PDF

Introduction: Pressure-based fractional flow reserve (FFR) and flow-based coronary flow reserve (CFR) assess the functional status of coronary artery disease (CAD) during cardiac catheterization. Complex hemodynamics may not be adequately explained by either pressure or flow alone. Consequently, pressure-drop coefficient (CDP, the ratio between pressure-drop across a stenosis and distal dynamic pressure) that combines both pressure and flow measurements has been developed to distinguish between epicardial stenosis (ES) and microvascular disease (MVD).

View Article and Find Full Text PDF

Introduction: A myocardial bridge (MB) is a condition where a segment of an epicardial coronary artery passes through the myocardial muscle. While traditionally regarded as benign, MBs have been associated with various cardiovascular conditions. Therefore, assessing their hemodynamic impact is crucial for informed treatment decisions.

View Article and Find Full Text PDF