Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The success of solid-state synthesis often hinges on the first intermediate phase that forms, which determines the remaining driving force to produce the desired target material. Recent work suggests that when reaction energies are large, thermodynamics primarily dictates the initial product formed, regardless of reactant stoichiometry. Here, we validate this principle and quantify its constraints by performing in situ characterization on 37 pairs of reactants. These experiments reveal a threshold for thermodynamic control in solid-state reactions, whereby initial product formation can be predicted when its driving force exceeds that of all other competing phases by ≥60 milli-electron volt per atom. In contrast, when multiple phases have a comparable driving force to form, the initial product is more often determined by kinetic factors. Analysis of the Materials Project data shows that 15% of possible reactions fall within the regime of thermodynamic control, highlighting the opportunity to predict synthesis pathways from first principles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221506 | PMC |
http://dx.doi.org/10.1126/sciadv.adp3309 | DOI Listing |