Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

MnO/polypyrrole (PPy) composite films were deposited on fluorine-doped tin oxide (FTO) conductive glasses by a two-step wet-chemical method, including electrochemical deposition and chemical bath deposition (CBD). The porous MnO films were first grown on FTO glasses by an electrodeposition method. Second, polypyrrole nanoparticles were polymerized by the oxidation-reduction reaction between MnO and pyrrole, using the presynthesized MnO as the skeleton. Then, MnO/PPy composite films with coral-like structures were obtained. The electrochemical and electrochromic (EC) properties of the prepared films were investigated. The results show that, compared to the single MnO or PPy film, the MnO/PPy composite film has a larger optical modulation (67.3% at a wavelength of 900 nm), faster response times (4 s for coloration and 3 s for bleaching), and a higher coloration efficiency (218.16 cm·C). The high coloration efficiency attests to the exceptional performance of the composite film in converting electrical signals into vivid color changes. The electrochemical stability test results show that the composite film maintains a stable EC performance after 200 coloration/bleaching cycles. The coral-like structures of the composite film are responsible for the better EC properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c05669DOI Listing

Publication Analysis

Top Keywords

composite film
16
mno/ppy composite
12
composite films
12
coral-like structures
12
electrochromic properties
8
films coral-like
8
coloration efficiency
8
composite
7
films
5
film
5

Similar Publications

Optimal cerium microalloying enhances SASS/Q235 weld corrosion and antibacterial performance.

iScience

September 2025

State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Super austenitic stainless steels (SASS) face challenges like galvanic corrosion and antibacterial performance when welded to carbon steel (Q235) in marine environments. This study demonstrates that adding 1.0 wt% cerium (Ce) to SASS refines the heat-affected zone (HAZ) grain structure (from 7 μm to 2 μm), suppresses detrimental σ-phase precipitation, and forms a dense oxide film.

View Article and Find Full Text PDF

Perovskite materials have revolutionized optoelectronics by virtue of their tunable bandgaps, exceptional optoelectronic properties, and structural flexibility. Notably, the state-of-the-art performance of perovskite solar cells has reached 27%, making perovskite materials a promising candidate for next-generation photovoltaic technology. Although numerous reviews regarding perovskite materials have been published, the existing reviews generally focus on individual material systems (e.

View Article and Find Full Text PDF

Water resistance and hydration mechanism of phosphogypsum cemented paste backfill under composite curing agent modification.

Environ Res

September 2025

School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Safe and Green Mining of Metal Mines with Cemented Paste Backfill, National Mine Safety Administration, University of Science and Technology Beijing, Beijing 100083, Chi

Cemented paste backfill has made outstanding contributions to the large-scale consumption of phosphogypsum (PG), but poor water resistance significantly weakens the mechanical strength, promotes the leaching of total soluble phosphate (TP) and fluoride ions (F), and reduces its attractiveness in mine engineering. This research synthesized a curing agent (CA) using sodium methylsilicate, sodium silicate, and polyaluminum chloride (PAC). PG produced from Deyang Haohua Qingping Phosphate Mine Co.

View Article and Find Full Text PDF

Circularly polarized luminescence (CPL) has emerged as a critical technology for anticounterfeiting and optical display applications due to its unique chiroptical properties. We report a multicolor CPL-emitting elastomeric film (P37/PSK@SiO-PDMS) that synergistically combines chiral helical polyacetylene (P37) and a surface-engineered perovskite (PSK@SiO) through hydrogen-bond-directed assembly. Confinement within the PDMS matrix drives P37 to self-assemble into a chiral supramolecular structure through hydrogen bonding, inducing a chiroptical inversion.

View Article and Find Full Text PDF

Electrochemical sensors capable of detecting different types of biomolecules using a single electrode are highly desirable for simplifying analytical platforms and expanding their practical applicability. Herein, we develop a multifunctional electrochemical sensor based on a 3D honeycomb-like porous rGO/PPy-POM composite film for the independent detection of dopamine (DA) and folic acid (FA), two chemically distinct and clinically relevant biomolecules. The electrode is fabricated through a facile, low-cost, and environmentally friendly breath figure method to create a 3D porous reduced graphene oxide (rGO) framework, followed by codeposition of polypyrrole (PPy) and polyoxometalates (POMs).

View Article and Find Full Text PDF