Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Carcass weight (HCW) and marbling (MARB) are critical for meat quality and market value in beef cattle. In composite breeds like Brangus, which meld the genetics of Angus and Brahman, SNP-based analyses have illuminated some genetic influences on these traits, but they fall short in fully capturing the nuanced effects of breed of origin alleles (BOA) on these traits. Focus on the impacts of BOA on phenotypic features within Brangus populations can result in a more profound understanding of the specific influences of Angus and Brahman genetics. Moreover, the consideration of BOA becomes particularly significant when evaluating dominance effects contributing to heterosis in crossbred populations. BOA provides a more comprehensive measure of heterosis due to its ability to differentiate the distinct genetic contributions originating from each parent breed. This detailed understanding of genetic effects is essential for making informed breeding decisions to optimize the benefits of heterosis in composite breeds like Brangus.

Objective: This study aims to identify quantitative trait loci (QTL) influencing HCW and MARB by utilizing SNP and BOA information, incorporating additive, dominance, and overdominance effects within a multi-generational Brangus commercial herd.

Methods: We analyzed phenotypic data from 1,066 genotyped Brangus steers. BOA inference was performed using LAMP-LD software using Angus and Brahman reference sets. SNP-based and BOA-based GWAS were then conducted considering additive, dominance, and overdominance models.

Results: The study identified numerous QTLs for HCW and MARB. A notable QTL for HCW was associated to the SGCB gene, pivotal for muscle growth, and was identified solely in the BOA GWAS. Several BOA GWAS QTLs exhibited a dominance effect underscoring their importance in estimating heterosis.

Conclusions: Our findings demonstrate that SNP-based methods may not detect all genetic variation affecting economically important traits in composite breeds. BOA inclusion in genomic evaluations is crucial for identifying genetic regions contributing to trait variation and for understanding the dominance value underpinning heterosis. By considering BOA, we gain a deeper understanding of genetic interactions and heterosis, which is integral to advancing breeding programs. The incorporation of BOA is recommended for comprehensive genomic evaluations to optimize trait improvements in crossbred cattle populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218112PMC
http://dx.doi.org/10.1186/s12864-024-10465-1DOI Listing

Publication Analysis

Top Keywords

composite breeds
12
angus brahman
12
boa
11
breed origin
8
understanding genetic
8
hcw marb
8
additive dominance
8
dominance overdominance
8
boa gwas
8
genomic evaluations
8

Similar Publications

Background And Aim: The search for sustainable and cost-effective protein alternatives to soybean meal in livestock diets has led to the exploration of legumes such as faba beans [FBs] ( L.). This study investigated the effects of dietary inclusion of FBs on carcass traits, meat quality, and selected blood parameters in Awassi lambs.

View Article and Find Full Text PDF

The Balkan Peninsula is a European biodiversity hotspot, home to 6,500 native vascular plant species, many of which are endemic. The region has diverse range of climates and complex topography, creating conditions that suit many woody ornamental, fruit, and forest species. Nevertheless, climate change, habitat destruction, invasive species, plant diseases, and agricultural practices threaten natural ecosystems and cultivated species.

View Article and Find Full Text PDF

Structural biology is fundamental to understanding the molecular basis of biological processes. While machine learning-based protein structure prediction has advanced considerably, experimentally determined structures remain indispensable for guiding structure-function analyses and for improving predictive modeling. However, experimental studies of protein complexes continue to pose challenges, particularly due to the necessity of high protein concentrations and purity for downstream analyses such as cryogenic electron microscopy.

View Article and Find Full Text PDF

Background And Aims: Crop wild relatives (CWRs) are key resources for enhancing agricultural resilience, providing genetic traits that can improve pest resistance, abiotic stress tolerance, and nutritional composition in domesticated crops. Within the mustard family (Brassicaceae) this is especially significant in the Brassiceae tribe, which includes economically important genera for agriculture such as Brassica and Sinapis. However, while breeding programmes have historically focused on major crops within this tribe, the potential of their wild relatives, particularly for underutilised and minor crops, remains insufficiently explored.

View Article and Find Full Text PDF

Breaking the reproducibility barrier with standardized protocols for plant-microbiome research.

PLoS Biol

September 2025

Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.

Inter-laboratory replicability is crucial yet challenging in microbiome research. Leveraging microbiomes to promote soil health and plant growth requires understanding underlying molecular mechanisms using reproducible experimental systems. In a global collaborative effort involving five laboratories, we aimed to help advance reproducibility in microbiome studies by testing our ability to replicate synthetic community assembly experiments.

View Article and Find Full Text PDF