98%
921
2 minutes
20
Background: Gutta-percha (GP) combined with an endodontic sealer is still the core material most widely used for tridimensional obturation. The sealer acts as a bonding agent between the GP and the root dentinal walls. However, one of the main drawbacks of GP core material is the lack of adhesiveness to the sealer. ZnO thin films have many remarkable features due to their considerable bond strength, good optical quality, and excellent piezoelectric, antibacterial, and antifungal properties, offering many potential applications in various fields. This study aimed to explore the influence of GP surface's functionalization with a nanostructured ZnO thin film on its adhesiveness to endodontic sealers.
Methods: Conventional GP samples were divided randomly into three groups: (a) Untreated GP (control); (b) GP treated with argon plasma (PT); (c) Functionalized GP (PT followed by ZnO thin film deposition). GP's surface functionalization encompassed a multi-step process. First, a low-pressure argon PT was applied to modify the GP surface, followed by a ZnO thin film deposition via magnetron sputtering. The surface morphology was assessed using SEM and water contact angle analysis. Further comprehensive testing included tensile bond strength assessment evaluating Endoresin and AH Plus Bioceramic sealers' adhesion to GP. ANOVA procedures were used for data statistical analysis.
Results: The ZnO thin film reproduced the underlying surface topography produced by PT. ZnO thin film deposition decreased the water contact angle compared to the control (p < 0.001). Endoresin showed a statistically higher mean bond strength value than AH Plus Bioceramic (p < 0.001). There was a statistically significant difference between the control and the ZnO-functionalized GP (p = 0.006), with the latter presenting the highest mean bond strength value.
Conclusions: The deposition of a nanostructured ZnO thin film on GP surface induced a shift towards hydrophilicity and an increased GP's adhesion to Endoresin and AH Bioceramic sealers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218323 | PMC |
http://dx.doi.org/10.1186/s12903-024-04496-z | DOI Listing |
Phys Chem Chem Phys
September 2025
Department of Physics, Indian Institute of Technology (ISM) Dhanbad, Jharkhand-826004, India.
Here, Ln-Li co-doped YO@ZnO core-shell heterostructures were synthesized by three different techniques - intermediate layer conversion method, a hydrothermal method, and an interlayer mediated hydrothermal method. The synthesis procedure is optimized based on the thickness and compactness of the developed shell. The growth kinetics and synthesis mechanism of each adopted method have been explained in detail using XRD, FESEM, TEM, SAED, and EDX characterization techniques.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemistry, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan.
Significant progress has been achieved in PbS colloidal quantum dot solar cells (CQDSCs) by concentrating on structural engineering, band-alignment engineering, and enhancing the interfacial functionality of colloidal quantum dots (CQDs). Nonetheless, designing a durable and efficient photovoltaic device still represents a considerable obstacle for scientists in this domain. The present work demonstrates that the photovoltaic performance of PbS CQDSCs can be increased by adding 1-5 wt % yttrium into the zinc oxide (YZO) ETL.
View Article and Find Full Text PDFMolecules
August 2025
Central Laboratory of Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, Tzarigradsko chaussee 72, 1784 Sofia, Bulgaria.
In this work, a sol-gel spin coating method was applied to obtain ZnO and ZnO:Ga thin films on a glass and ITO-coated glass substrate. Their structural, optical, and electrical properties were investigated with respect to their dependence on the different substrates, the number of layers (two and four), and the annealing temperature (300 and 400 °C). X-ray diffraction (XRD) patterns showed a hexagonal structure corresponding to the wurtzite phase for ZnO and ZnO:Ga films.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, Akad. G. Bonchev Str. Bl. 10, 1000 Sofia, Bulgaria.
The main goal of this study was to investigate the properties of ZnO thin films, including pure films and those doped with indium (up to 8 mol%) that was deposited using a spray pyrolysis technique on glass and silicon substrates in order to prepare the position-sensitive structure, Si-SiO-ZnO:In. To this aim, the present work is focused on investigating the effect of indium concentration on the morphology, structure, and optical properties of the films. X-ray diffraction (XRD) analysis reveals a wurtzite polycrystalline structure.
View Article and Find Full Text PDFLab Chip
August 2025
Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Non-contact and label-free acoustic manipulation of particles is crucial for various applications ranging from cell separation and tissue engineering to micromachining and nanofabrication. Surface acoustic waves (SAWs) have been widely used for microscale particle manipulation; their leaky nature in liquid often generates significant bulk acoustic streaming that undermines stable trapping of nanoscale particles. To address this challenge, we introduce an acoustofluidic device comprising a zinc oxide (ZnO) thin film deposited on aluminum foil with one-sided water loading.
View Article and Find Full Text PDF