98%
921
2 minutes
20
The 3D folding of a mammalian gene can be studied by a polymer model, where the chromatin fiber is represented by a semiflexible polymer which interacts with multivalent proteins, representing complexes of DNA-binding transcription factors and RNA polymerases. This physical model leads to the natural emergence of clusters of proteins and binding sites, accompanied by the folding of chromatin into a set of topologies, each associated with a different network of loops. Here, we combine numerics and analytics to first classify these networks and then find their relative importance or statistical weight, when the properties of the underlying polymer are those relevant to chromatin. Unlike polymer networks previously studied, our chromatin networks have finite average distances between successive binding sites, and this leads to giant differences between the weights of topologies with the same number of edges and nodes but different wiring. These weights strongly favor rosettelike structures with a local cloud of loops with respect to more complicated nonlocal topologies. Our results suggest that genes should overwhelmingly fold into a small fraction of all possible 3D topologies, which can be robustly characterized by the framework we propose here.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.248403 | DOI Listing |
Neuroscience
August 2025
Department of Biology, Utah State University, Logan, UT, United States. Electronic address:
Forming social bonds is fundamental in helping us foster connections with others. The loss of a loved one often results in grief, stress, and loneliness, and the stress response system of the body has been implicated in the physiological symptoms associated with grieving. Corticotropin releasing factor (CRF) is the hormone that initiates the stress response in the body and acts at two different receptor subtypes CRF receptor (CRFR)1 and CRFR2.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Department of Biological Sciences, Columbia University, New York, NY 10027, United States.
The 3'-end cleavage and polyadenylation of pre-mRNAs is dependent on a key hexanucleotide motif known as the polyadenylation signal (PAS). The PAS hexamer is recognized by the mammalian polyadenylation specificity factor (mPSF). AAUAAA is the most frequent PAS hexamer and together with AUUAAA, the second most frequent hexamer, account for ∼75% of the poly(A) signals.
View Article and Find Full Text PDFBiochimie
September 2025
Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China. Electronic address:
The nuclear factor of activated T cells 3 (NFATc3) plays a significant role in various cancer-related processes, but its interactions with transcriptional modulators, particularly Promyelocytic Leukemia protein (PML), remain poorly understood. PML, a nuclear scaffold protein, is involved in tumor suppression and transcriptional regulation. This study investigates the interaction between NFATc3 and PML, focusing on the role of SUMOylation and its impact on downstream target genes.
View Article and Find Full Text PDFNeuroscience
September 2025
Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland.
This review consolidates the most recent information regarding the role of microRNAs (miRNAs) that target the oestrogen receptor beta (ESR2/ERβ) gene in the pathophysiology of emotional disorders, with a particular emphasis on stress-related conditions and anxiety. Since in silico predictions frequently precede experimental validation and algorithms such as TargetScan and DIANA-microT identified possible miRNA binding sites on ESR2 based on sequence complementarity, we demonstrate a high degree of accuracy in predicting functional interactions. Parallel evidence unrelated to the studied biological contexts supports the idea that miRNAs may regulate ERβ signalling in emotional disorders, thereby further supporting miRNA-ESR2 interactions.
View Article and Find Full Text PDFJ Biol Chem
September 2025
Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou 310024; University of Chinese Academy of Sciences, China. Electronic address:
Phage display libraries of human single-chain variable fragments (scFv) serve as a valuable resource for generating fully human antibodies for scientific and clinical applications. In this study, we designed and constructed a highly diverse semi-synthetic humanized scFv phage display library using an optimized Kunkel mutagenesis approach. Our optimizations eliminated residual template, enhancing mutagenesis efficiency and expanding library diversity with a reservoir capacity exceeding 10.
View Article and Find Full Text PDF