Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Arbuscular mycorrhizal (AM) fungi are difficult to manipulate and observe due to their permanent association with plant roots and propagation in the rhizosphere. Typically, AM fungi are cultured under in vivo conditions in pot culture with an autotrophic host or under in vitro conditions with Ri Transfer-DNA transformed roots (heterotrophic host) in a Petri dish. Additionally, the cultivation of AM fungi in pot culture occurs in an opaque and non-sterile environment. In contrast, in vitro culture involves the propagation of AM fungi in a sterile, transparent environment. The superabsorbent polymer-based autotrophic system (SAP-AS) has recently been developed and shown to combine the advantages of both methods while avoiding their respective limitations (opacity and heterotrophic host, sterility). Here, we present a detailed protocol for easy preparation, single spore inoculation, and observation of AM fungi in SAP-AS. By modifying the Petri dishes, high-resolution photographic and video observations were possible on living specimens, which would have been difficult or impossible with current in vivo and in vitro techniques.

Download full-text PDF

Source
http://dx.doi.org/10.3791/66848DOI Listing

Publication Analysis

Top Keywords

arbuscular mycorrhizal
8
superabsorbent polymer-based
8
polymer-based autotrophic
8
pot culture
8
heterotrophic host
8
fungi
5
inoculating observing
4
observing arbuscular
4
mycorrhizal cultures
4
cultures superabsorbent
4

Similar Publications

Arbuscular mycorrhizal fungi distribution responds to ecological damage characteristics in antimony mining ecosystems.

J Environ Manage

September 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China.

The fragmented ecological environment in the mining ecosystem has a significant impact on the microbial community and affects ecosystem stability. Arbuscular mycorrhizal fungi (AMF) facilitate nutrient exchange and element cycling between soil and plants, which play a crucial role in the functionality and stability of soil ecosystems. However, the mechanism of ecological environment factors influencing AMF community assembly in mining areas is still unclear.

View Article and Find Full Text PDF

Nitrogen leaching is a major pathway of nitrogen fertilizer loss. Although arbuscular mycorrhizal (AM) fungi are known to reduce nitrogen leaching by improving plant nitrogen uptake, the soil-based mechanisms remain unclear. A pot experiment was conducted using a randomized complete block design, with four nitrogen levels (0, 3.

View Article and Find Full Text PDF

The utilization of arbuscular mycorrhizal fungi (AMF) and spp. correlates with improved plant nutrition and the stimulation of systemic plant defenses in response to pathogen challenges. Nonetheless, studies examining the effects of AMF colonization and the foliar application of the isolate Tvd44 on viral infection are limited.

View Article and Find Full Text PDF

This study investigates how agricultural disturbance influences arbuscular mycorrhizal (AM) fungal diversity, biomass, and community niche structure. Utilizing niche concepts, we show that the AM fungal communities in intensively managed soils exhibited larger niche volumes and an increased proportion of culturable taxa, which negatively impacted biomass production. This process was primarily driven by the reduction in specialist taxa, indicating a functional homogenization of the community.

View Article and Find Full Text PDF

This study investigated the potential of native arbuscular mycorrhizal fungi (AMF) isolated from organic cassava fields as a biofertilizer, assessing their effects on cassava growth both alone and in combination with plant growth-promoting bacteria (PGPB). AMF spores were isolated from the rhizospheric soil of organic cassava field soils in northeastern Thailand and grouped into two consortia based on spore size: A45 and A75. Molecular identification revealed that both consortia were dominated by the genera Claroideoglomus and Entrophospora, with Paraglomus additionally present in the A45 consortium.

View Article and Find Full Text PDF