Molecular Mechanisms and Physiological Functions of Autophagy.

J Mol Biol

Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA. Electronic address:

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2024.168692DOI Listing

Publication Analysis

Top Keywords

molecular mechanisms
4
mechanisms physiological
4
physiological functions
4
functions autophagy
4
molecular
1
physiological
1
functions
1
autophagy
1

Similar Publications

Plasticity Mechanisms in Nanostructured Cubic Boron Nitride: Internal Defects and Amorphous Layers.

ACS Appl Mater Interfaces

September 2025

School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.

Nanostructured cubic boron nitride (NS-cBN) has attracted significant attention due to its high hardness and excellent thermal stability, yet a systematic strategy to balance strength and toughness through atomically structural design remains elusive. Here, we integrate plasticity theory with large-scale atomistic simulations to elucidate the size-dependent roles of internal defects, i.e.

View Article and Find Full Text PDF

Hexaazaisowurtzitane (CL-20) is a high-energy-density compound with poor thermal stability, which hinders its application in composite energetic systems. A bi-interface structure of polydopamine-coated graphene oxide (GO@PDA) is shown to markedly improve thermal stability compared with pristine CL-20 and single-layer coatings. Reactive molecular dynamics simulations enhanced by a neural network potential (NNP) reveal that the delayed onset of decomposition arises from suppressed NO release and altered spatial density distribution, while interfacial -OH and -COOH groups consume intermediates, redirect decomposition pathways, and inhibit autocatalytic chain reactions.

View Article and Find Full Text PDF

Background: Sodium-glucose cotransporter 2 (SGLT2) inhibitors, such as Empagliflozin, are antidiabetic drugs that reduce glucose levels and have emerged as a promising therapy for patients with heart failure (HF), although the exact molecular mechanisms underlying their cardioprotective effects remain to be fully elucidated. The EmDia study, a randomized, double-blind trial conducted at the University Medical Center of Mainz, has confirmed the beneficial effects of Empagliflozin in HF patients after both one and twelve weeks of treatment. In this work, we aimed to assess whether changes in lipid profiles driven by Empagliflozin use in HF patients in the EmDia trial could assist in gaining a better understanding of its cardioprotective mechanisms.

View Article and Find Full Text PDF

Nr4a2 (Nurr1) is well known to be vital for midbrain dopaminergic neurons. Recent single-cell RNA analyses reveal that Nr4a2 is expressed in lateral cerebral regions, within neurons named L4/L5/L6 IT Car3. These neurons have attracted intense attention for the molecular mechanisms underlying their development and functions.

View Article and Find Full Text PDF

Numerous people experiencing acute myocardial infarction are also experiencing myocardial ischemia-reperfusion injury (MIRI). Pyroptosis is a core mechanism in MIRI. Tongxinluo (TXL) has a significant protective effect on endothelial cell function.

View Article and Find Full Text PDF