A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Engineering sub-organelles of a diploid Saccharomyces cerevisiae to enhance the production of 7-dehydrocholesterol. | LitMetric

Engineering sub-organelles of a diploid Saccharomyces cerevisiae to enhance the production of 7-dehydrocholesterol.

Metab Eng

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China. Electronic

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

7-Dehydrocholesterol (7-DHC) is widely present in various organisms and is an important precursor of vitamin D. Despite significant improvements in the biosynthesis of 7-DHC, it remains insufficient to meet the industrial demands. In this study, we reported high-level production of 7-DHC in an industrial Saccharomyces cerevisiae leveraging subcellular organelles. Initially, the copy numbers of DHCR24 were increased in combination with sterol transcriptional factor engineering and rebalanced the redox power of the strain. Subsequently, the effects of compartmentalizing the post-squalene pathway in peroxisomes were validated by assembling various pathway modules in this organelle. Furthermore, several peroxisomes engineering was conducted to enhance the production of 7-DHC. Utilizing the peroxisome as a vessel for partial post-squalene pathways, the potential of yeast for 7-dehydrocholesterol production was demonstrated by achieving a 26-fold increase over the initial production level. 7-DHC titer reached 640.77 mg/L in shake flasks and 4.28 g/L in a 10 L bench-top fermentor, the highest titer ever reported. The present work lays solid foundation for large-scale and cost-effective production of 7-DHC for practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymben.2024.06.011DOI Listing

Publication Analysis

Top Keywords

production 7-dhc
12
saccharomyces cerevisiae
8
enhance production
8
production
6
7-dhc
6
engineering sub-organelles
4
sub-organelles diploid
4
diploid saccharomyces
4
cerevisiae enhance
4
production 7-dehydrocholesterol
4

Similar Publications