Anatomically plausible segmentations: Explicitly preserving topology through prior deformations.

Med Image Anal

Oxford Machine Learning Neuroimaging Lab (OMNI) Computer Science Department, University of Oxford, Oxford, OX1 3QG, United Kingdom; Wellcome Centre for Integrative Neuroimaging, Wellcome Centre for Integrative Neuroimaging, Oxford, United Kingdom.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Since the rise of deep learning, new medical segmentation methods have rapidly been proposed with extremely promising results, often reporting marginal improvements on the previous state-of-the-art (SOTA) method. However, on visual inspection errors are often revealed, such as topological mistakes (e.g. holes or folds), that are not detected using traditional evaluation metrics. Incorrect topology can often lead to errors in clinically required downstream image processing tasks. Therefore, there is a need for new methods to focus on ensuring segmentations are topologically correct. In this work, we present TEDS-Net: a segmentation network that preserves anatomical topology whilst maintaining segmentation performance that is competitive with SOTA baselines. Further, we show how current SOTA segmentation methods can introduce problematic topological errors. TEDS-Net achieves anatomically plausible segmentation by using learnt topology-preserving fields to deform a prior. Traditionally, topology-preserving fields are described in the continuous domain and begin to break down when working in the discrete domain. Here, we introduce additional modifications that more strictly enforce topology preservation. We illustrate our method on an open-source medical heart dataset, performing both single and multi-structure segmentation, and show that the generated fields contain no folding voxels, which corresponds to full topology preservation on individual structures whilst vastly outperforming the other baselines on overall scene topology. The code is available at: https://github.com/mwyburd/TEDS-Net.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2024.103222DOI Listing

Publication Analysis

Top Keywords

anatomically plausible
8
segmentation methods
8
topology-preserving fields
8
topology preservation
8
topology
6
segmentation
6
plausible segmentations
4
segmentations explicitly
4
explicitly preserving
4
preserving topology
4

Similar Publications

Computed Tomography (CT) to Cone-Beam Computed Tomography (CBCT) image registration is crucial for image-guided radiotherapy and surgical procedures. However, achieving accurate CT-CBCT registration remains challenging due to various factors such as inconsistent intensities, low contrast resolution and imaging artifacts. In this study, we propose a Context-Aware Semantics-driven Hierarchical Network (referred to as CASHNet), which hierarchically integrates context-aware semantics-encoded features into a coarse-to-fine registration scheme, to explicitly enhance semantic structural perception during progressive alignment.

View Article and Find Full Text PDF

Cone beam computed tomography (CBCT) is a widely-used imaging modality in dental healthcare. It is an important task to segment each 3D CBCT image, which involves labeling lesions, bone, teeth, and restorative material on a voxel-by-voxel basis, as it aids in lesion detection, diagnosis, and treatment planning. The current clinical practice relies on manual segmentation, which is labor-intensive and demands considerable expertise.

View Article and Find Full Text PDF

A critical review of high-frequency activity for functional mapping in SEEG.

Epilepsia

September 2025

Department of Neuroscience, The School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.

Mapping functional brain networks is a critical component of stereo-electroencephalography (SEEG) evaluations. Although direct cortical stimulation (DCS) is the clinical gold standard, it has important limitations-particularly in mapping distributed, complex functions such as language and memory, where deficits may still occur despite preservation of DCS-positive sites, impacting quality of life. More broadly, there is increasing emphasis on preserving cognitive function in epilepsy surgery.

View Article and Find Full Text PDF

Oculopalatal tremor is a rare neurological disorder characterized by rhythmic oscillations of ocular and palatal muscles. This phenomenon is commonly associated with hypertrophic degeneration of the inferior olive due to loss of GABAergic cerebello-olivary fibers. Oculopalatal tremor highlights the complex interplay between cerebellar, mesodiencephalic, and olivary networks.

View Article and Find Full Text PDF

Objective: To overcome the scarcity of annotated dental X-ray datasets, this study presents a novel pipeline for generating high-resolution synthetic orthopantomography (OPG) images using customized generative adversarial networks (GANs).

Methods: A total of 4777 real OPG images were collected from clinical centres in Pakistan, Thailand, and the U.S.

View Article and Find Full Text PDF