A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Fragment-Fusion Transformer: Deep Learning-Based Discretization Method for Continuous Single-Cell Raman Spectral Analysis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Raman spectroscopy has become an important single-cell analysis tool for monitoring biochemical changes at the cellular level. However, Raman spectral data, typically presented as continuous data with high-dimensional characteristics, is distinct from discrete sequences, which limits the application of deep learning-based algorithms in data analysis due to the lack of discretization. Herein, a model called fragment-fusion transformer is proposed, which integrates the discrete fragmentation of continuous spectra based on their intrinsic characteristics with the extraction of intrafragment features and the fusion of interfragment features. The model integrates the intrinsic feature-based fragmentation of spectra with transformer, constructing the fragment transformer block for feature extraction within fragments. Interfragment information is combined through the pyramid design structure to improve the model's receptive field and fully exploit the spectral properties. During the pyramidal fusion process, the information gain of the final extracted features in the spectrum has been enhanced by a factor of 9.24 compared to the feature extraction stage within the fragment, and the information entropy has been enhanced by a factor of 13. The fragment-fusion transformer achieved a spectral recognition accuracy of 94.5%, which is 4% higher compared to the method without fragmentation and fusion processes on the test set of cell Raman spectroscopy identification experiments. In comparison to common spectral classification models such as KNN, SVM, logistic regression, and CNN, fragment-fusion transformer has achieved 4.4% higher accuracy than the best-performing CNN model. Fragment-fusion transformer method has the potential to serve as a general framework for discretization in the field of continuous spectral data analysis and as a research tool for analyzing the intrinsic information within spectra.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.4c00149DOI Listing

Publication Analysis

Top Keywords

fragment-fusion transformer
20
deep learning-based
8
raman spectral
8
raman spectroscopy
8
analysis tool
8
spectral data
8
data analysis
8
feature extraction
8
enhanced factor
8
transformer achieved
8

Similar Publications