Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Single-walled carbon nanotubes (SWCNTs) have gained significant interest for their potential in biomedicine and nanoelectronics. The functionalization of SWCNTs with single-stranded DNA (ssDNA) enables the precise control of SWCNT alignment and the development of optical and electronic biosensors. This study addresses the current gaps in the field by employing high-throughput systematic selection, enriching high-affinity ssDNA sequences from a vast random library. Specific base compositions and patterns are identified that govern the binding affinity between ssDNA and SWCNTs. Molecular dynamics simulations validate the stability of ssDNA conformations on SWCNTs and reveal the pivotal role of hydrogen bonds in this interaction. Additionally, it is demonstrated that machine learning could accurately distinguish high-affinity ssDNA sequences, providing an accessible model on a dedicated webpage (http://service.k-medai.com/ssdna4cnt). These findings open new avenues for high-affinity ssDNA-SWCNT constructs for stable and sensitive molecular detection across diverse scientific disciplines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348070PMC
http://dx.doi.org/10.1002/advs.202308915DOI Listing

Publication Analysis

Top Keywords

high-affinity ssdna
12
ssdna sequences
12
systematic selection
8
carbon nanotubes
8
ssdna
6
high-affinity
4
selection high-affinity
4
sequences carbon
4
nanotubes single-walled
4
single-walled carbon
4

Similar Publications

Aptamers are single-stranded DNA or RNA oligonucleotides that can bind to specific target molecules with high affinity and specificity. Fluorescence DNA aptamer-based biosensors (aptasensors) have emerged as powerful analytical tools for detecting diverse targets, ranging from food contaminants to disease biomarkers, owing to their exceptional specificity, high sensitivity, and cost-effectiveness. This review systematically summarizes recent advances in the design strategies of fluorescence aptasensors, focusing on three key approaches: (1) fluorescence resonance energy transfer-based signal amplification, (2) nanomaterial-enhanced probes, and (3) multi-channel platforms for simultaneous detection.

View Article and Find Full Text PDF

5-Methyltetrahydrofolate (5-MTHF), the primary bioactive form of folate (vitamin B9), played a vital role in human metabolism. In this work, an electrochemical/colorimetric dual-mode aptasensor for 5-MTHF was constructed by combining a DNA Walker-driven CRISPR-Cas12a trans-cleavage system. A 5-MTHF aptamer D1a was obtained through Capture-SELEX with subsequent trimming of non-binding regions, which exhibiting high affinity and specificity.

View Article and Find Full Text PDF

Plasmid DNA (pDNA) purification plays a key role in the development of vaccines and gene therapies. Affinity chromatography stands out as a promising method for plasmid purification, leveraging a range of biological and synthetic ligands to achieve selectivity. This study investigates the potential of a synthetic ligand library consisting of triazine-based bifunctional compounds designed to mimic the side chains of amino acids that are known to bind nucleic acids.

View Article and Find Full Text PDF

Botrytis cinerea, the necrotrophic fungus responsible for grey mould disease, is a major threat to global crop production. Control strategies mainly rely on chemical fungicides, but resistance development limits their long-term effectiveness. This study introduces, for the first time in crop protection, the use of DNA aptamers as a novel and sustainable strategy.

View Article and Find Full Text PDF

Inhibition of Enterotoxigenic Escherichia coli adhesion via aptamers prevents infection in IPEC-J2 cells.

BMC Microbiol

August 2025

Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.

Enterotoxigenic Escherichia coli (ETEC) is a well-known strain associated with post-weaning diarrhea. Consequently, strategies to prevent and inhibit ETEC infections are critically important. Aptamers are single-stranded DNA or RNA sequences that exhibit high affinity and specificity for binding to target molecules.

View Article and Find Full Text PDF