Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The production of citric acid, a vital agricultural commodity utilized across various industries such as food, beverages, pharmaceuticals, agriculture, detergents, and cosmetics, predominantly relies on microbial fermentation, with accounting for approximately 90% of global production. In this study, we aimed to optimize the key factors influencing citric acid production, with a focus on strains, fermentation techniques, and carbon sources, particularly sugarcane molasses. , sourced from the Botany department/Biotechnology laboratories at Govt. College of Science, Lahore, was employed for citric acid production. The process involved inoculum preparation through spore collection from 3 to 5 days of cultured PDA slants. The fermentation medium, comprising cane molasses with a 15% sugar concentration, was meticulously prepared and optimized for various factors, including magnesium sulfate, potassium ferrocyanide, time of addition of potassium ferrocyanide, ammonium oxalate, and calcium chloride. Our optimization results shed light on the significant impact of different factors on citric acid production. For instance, the addition of 0.4 g/L magnesium sulfate led to a maximum yield of 75%, while 2 g/L potassium ferrocyanide, added at 24 h, achieved a yield of 78%. Remarkably, ammonium oxalate, at a concentration of 10 g/L, resulted in a notable 77% yield. Conversely, the addition of calcium chloride exhibited negligible effects on citric acid production, with the control group yielding more at 78%. Our study underscores the potential for optimizing factors to enhance citric acid production by in submerged fermentation. These findings highlight the pivotal role of magnesium sulfate, potassium ferrocyanide, and ammonium oxalate in augmenting citric acid yields while emphasizing the minimal impact of calcium chloride. Ultimately, these insights contribute to advancing our understanding of microbial citric acid biosynthesis, providing valuable implications for industrial applications and future research endeavors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11204724PMC
http://dx.doi.org/10.3390/life14060756DOI Listing

Publication Analysis

Top Keywords

citric acid
36
acid production
24
potassium ferrocyanide
16
magnesium sulfate
12
ammonium oxalate
12
calcium chloride
12
acid
9
production
8
sugarcane molasses
8
citric
8

Similar Publications

This in vitro study evaluated the effect of proanthocyanidin, palm oil, and vitamin E against initial erosion. Bovine enamel blocks (n = 140) were divided into 14 groups: C+_SnCl2/NaF/Am-F-containing solution (positive control); C-_deionized water (negative control); O_palm oil; P6.5_6.

View Article and Find Full Text PDF

Background: Despite the advancements of pharmacological treatments and gauze dressings in the field of skin wound healing, these methods present numerous limitations. Therefore, developing a multifunctional material capable of efficiently promoting skin wound healing is particularly crucial.

Methods: Citric acid (CA)-modified chitosan (CS) loaded with Shikonin (SK) (CA-CS-SK) hydrogel was prepared via the freeze-thaw method.

View Article and Find Full Text PDF

In recent years, there has been a rapid increase in the incidence of thyroid carcinoma (TC). Our study focuses on the regulatory effect of circular RNAs on metabolism of TC, aiming to provide new insights into the mechanisms of progression and a potential therapeutic target for TC. In this study, we identified high expression levels of circPSD3 in TC tissues through RNA sequencing.

View Article and Find Full Text PDF

Evaluation of crosslinked cellulose-based solid and gel polymer electrolytes in lithium-ion batteries.

Int J Biol Macromol

September 2025

Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran. Electronic address:

In order to develop an alternate material for energy storage devices like batteries, this research is being done to create polymer electrolytes based on cellulose as natural polymer. Natural polymers as battery components have a number of advantages, including availability, biodegradability, unleakage, stable form, superior process, electrochemical stability, and low cost. In this study, polymer electrolytes based on cellulose have been synthesized by solution casting to prepare a thin polymer films.

View Article and Find Full Text PDF

This study investigates a multifunctional hydrogel system integrating carboxymethyl cellulose (CMC) in a 3D-printed limonene (LIM) scaffold coated with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS). The system allows to enhance wound healing, prevent infections, and monitor the healing progress. CMC is crosslinked with citric acid (CA) to form the hydrogel matrix (CMC-CA), while the 3D-printed limonene (LIM) scaffold is embedded within the hydrogel to provide mechanical support.

View Article and Find Full Text PDF