Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ten-eleven translocation 1 (TET1) is a methylcytosine dioxygenase involved in active DNA demethylation. In our previous study, we demonstrated that TET1 reprogrammed the ovarian cancer epigenome, increased stem properties, and activated various regulatory networks, including metabolic networks. However, the role of TET1 in cancer metabolism remains poorly understood. Herein, we uncovered a demethylated metabolic gene network, especially oxidative phosphorylation (OXPHOS). Contrary to the concept of the Warburg effect in cancer cells, TET1 increased energy production mainly using OXPHOS rather than using glycolysis. Notably, TET1 increased the mitochondrial mass and DNA copy number. TET1 also activated mitochondrial biogenesis genes and adenosine triphosphate production. However, the reactive oxygen species levels were surprisingly decreased. In addition, TET1 increased the basal and maximal respiratory capacities. In an analysis of tricarboxylic acid cycle metabolites, TET1 increased the levels of α-ketoglutarate, which is a coenzyme of TET1 dioxygenase and may provide a positive feedback loop to modify the epigenomic landscape. TET1 also increased the mitochondrial complex I activity. Moreover, the mitochondrial complex I inhibitor, which had synergistic effects with the casein kinase 2 inhibitor, affected ovarian cancer growth. Altogether, TET1-reprogrammed ovarian cancer stem cells shifted the energy source to OXPHOS, which suggested that metabolic intervention might be a novel strategy for ovarian cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200674PMC
http://dx.doi.org/10.3390/antiox13060735DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
20
tet1 increased
20
mitochondrial complex
12
tet1
11
active dna
8
oxidative phosphorylation
8
cancer stem
8
stem cells
8
complex inhibitor
8
increased mitochondrial
8

Similar Publications

Resistance to platinum-based drugs and PARP inhibitors (PARPi) is the leading cause of treatment failure in epithelial ovarian cancer (EOC). This study aimed to identify resistance mechanisms shared by both. Using bioinformatic analyses, EOC tissues, primary tumor cells and organoids, and chemoresistant cell lines, we identified lymphoid enhancer-binding factor 1 (LEF1) as a candidate, whose expression was increased in both platinum-resistant and PARPi-resistant tumors.

View Article and Find Full Text PDF

Granulosa cell tumors (GCTs) are rare ovarian neoplasms, accounting for 2-5% of all ovarian cancers. Two histological types have been described: juvenile (JGCT) and adult (AGCT), the latter accounting for around 95% of the GCTs. AGCTs are mostly diagnosed at an early stage and commonly have a good prognosis.

View Article and Find Full Text PDF

Background: Tumor heterogeneity and antigen escape are mechanisms of resistance to chimeric antigen receptor (CAR)-T cell therapy, especially in solid tumors. Targeting multiple antigens with a unique CAR construct could be a strategy for a better tumor control than monospecific CAR-T cells on heterogeneous models. To overcome tumor heterogeneity, we targeted mesothelin (meso) and Mucin 16 (MUC16), two antigens commonly expressed in solid tumors, using a tandem CAR design.

View Article and Find Full Text PDF

Purpose: Ovarian cancer ranks as a gynecological malignancy with poor prognosis, specifically if detected late. Primary treatment includes cytoreductive surgery and adjuvant chemotherapy with curative intent. Local anesthetics (LA) administered in the perioperative period may potentially impact patient outcome by several mechanisms.

View Article and Find Full Text PDF

Background: Homologous recombination deficiency (HRD)-related genetic mutations in ovarian high-grade serous carcinoma (HGSC) are known to be ethnic specific. Here, we assessed the diagnostic performance of HRD and its clinical implication in Korean HGSC patients using the SOPHiA DDM HRD Solution.

Methods: Sixty-three ovarian cancer (OC) patients were enrolled, including 53 with HGSC and 10 with other subtypes.

View Article and Find Full Text PDF