98%
921
2 minutes
20
The response of benthic habitats and organisms to bottom-contact fishing intensity is investigated in marine protected areas (MPAs) of the German EEZ in the North and Baltic Seas. We examined the current state of macrofauna biodiversity in 2020-2022. Comparative analysis for macrofauna (in- and epifauna) inhabiting nine Natura 2000 MPAs constitutes a baseline to assess the effects of bottom-contact fishing exclusion in the future. Aspects of spatial and temporal variability are briefly summarized and discussed. We provide a species list for each region, including 481 taxa, of which 79 were found in both regions, 183 only in the North Sea, and 219 only in the Baltic Sea. The Baltic Sea dataset surprisingly included higher numbers of taxa and revealed more Red List species. The share of major taxonomic groups (polychaetes, bivalves and amphipods) in species richness showed peculiar commonalities between the two regions. In the North Sea, multivariate analysis of community structure revealed significantly higher within-similarity and stronger separation between the considered MPAs compared to the Baltic MPAs. Salinity, temperature and sediment fractions of sand were responsible for over 60% of the variation in the North Sea macrofauna occurrence data. Salinity, mud fraction and bottom-contact fishing were the most important drivers in the Baltic Sea and, together with other considered environmental drivers, were responsible for 53% of the variation. This study identifies aspects of macrofauna occurrence that may be used to assess (causes of) future changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11201066 | PMC |
http://dx.doi.org/10.3390/biology13060389 | DOI Listing |
Sci Adv
March 2025
Department of Biology, University of Antwerp, Wilrijk, Belgium.
The seafloor is responsible for 40% of the alkalinity input to the ocean, thus contributing to the ocean's capacity to sequester atmospheric CO. Anthropogenic seafloor disturbances induced by mobile bottom-contact fishing and dredging influence this natural carbon sink, yet the human impact on the ocean's alkalinity cycle remains poorly quantified. Model simulations show that the combined impact of mobile bottom-contact fishing (e.
View Article and Find Full Text PDFSci Adv
January 2025
Bloom Association, Paris, France.
Numerous studies have highlighted bottom-contact fishing gears as the primary threat to vulnerable marine ecosystems (VMEs). In November 2022, the European Commission closed 87 VME protection polygons to bottom fishing in European waters. Using public automatic identification system (AIS) data, we found an 81% decrease in bottom-contact fishing effort within these areas in the year following the closures.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, University of Bergen, Bergen, Norway.
Sponges are key ecosystem engineers that shape, structure and enhance the biodiversity of marine benthic communities globally. Sponge aggregations and reefs are recognized as vulnerable marine ecosystems (or VMEs) due to their susceptibility to damage from bottom-contact fishing gears. Ensuring their long-term sustainability, preservation, and ecosystem functions requires the implementation of sound scientific conservation tools.
View Article and Find Full Text PDFBiology (Basel)
May 2024
Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, D-18119 Rostock, Germany.
The response of benthic habitats and organisms to bottom-contact fishing intensity is investigated in marine protected areas (MPAs) of the German EEZ in the North and Baltic Seas. We examined the current state of macrofauna biodiversity in 2020-2022. Comparative analysis for macrofauna (in- and epifauna) inhabiting nine Natura 2000 MPAs constitutes a baseline to assess the effects of bottom-contact fishing exclusion in the future.
View Article and Find Full Text PDFSci Total Environ
January 2024
Department of Marine Geology, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), 18119 Rostock, Germany; Marine Geochemistry, University of Greifswald, 17489 Greifswald, Germany; Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany.
Trawl-fishing is broadly considered to be one of the most destructive anthropogenic activities toward benthic ecosystems. In this study, we examine the effects of bottom-contact fishing by otter trawls on the geochemistry and macrofauna in sandy silt sediment in an area of the Baltic Sea where clear spatial patterns in trawling activity were previously identified by acoustic mapping. We calibrated an early diagenetic model to biogeochemical data from various coring locations.
View Article and Find Full Text PDF