A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Non-invasive prediction of massive transfusion during surgery using intraoperative hemodynamic monitoring data. | LitMetric

Non-invasive prediction of massive transfusion during surgery using intraoperative hemodynamic monitoring data.

J Biomed Inform

Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Obstetrics and Gynecology & Innovative Medical Technology Research Institute, Seoul National University Hospital, Republic of Korea; Medical Big Data Research Center & Inst

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Failure to receive prompt blood transfusion leads to severe complications if massive bleeding occurs during surgery. For the timely preparation of blood products, predicting the possibility of massive transfusion (MT) is essential to decrease morbidity and mortality. This study aimed to develop a model for predicting MT 10 min in advance using non-invasive bio-signal waveforms that change in real-time.

Methods: In this retrospective study, we developed a deep learning-based algorithm (DLA) to predict intraoperative MT within 10 min. MT was defined as the transfusion of 3 or more units of red blood cells within an hour. The datasets consisted of 18,135 patients who underwent surgery at Seoul National University Hospital (SNUH) for model development and internal validation and 621 patients who underwent surgery at the Boramae Medical Center (BMC) for external validation. We constructed the DLA by using features extracted from plethysmography (collected at 500 Hz) and hematocrit measured during surgery.

Results: Among 18,135 patients in SNUH and 621 patients in BMC, 265 patients (1.46%) and 14 patients (2.25%) received MT during surgery, respectively. The area under the receiver operating characteristic curve (AUROC) of DLA predicting intraoperative MT before 10 min was 0.962 (95% confidence interval [CI], 0.948-0.974) in internal validation and 0.922 (95% CI, 0.882-0.959) in external validation, respectively.

Conclusion: The DLA can successfully predict intraoperative MT using non-invasive bio-signal waveforms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbi.2024.104680DOI Listing

Publication Analysis

Top Keywords

massive transfusion
8
non-invasive bio-signal
8
bio-signal waveforms
8
dla predict
8
predict intraoperative
8
intraoperative 10 min
8
18135 patients
8
patients underwent
8
underwent surgery
8
internal validation
8

Similar Publications