Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The growing emphasis on ecosystem services (ES) has enhanced evaluation of their capacity. However, intensive human intervention in the provisioning ecosystem service (P-ES) supply driven by widening spatial gaps between supply sources and demand locations, compromises the long-term ES supply potential. The Resources Time Footprint (RTF) indicator provides numerical insights into these impacts in the form of occupancy rates by comparing resource utilization to allocated capacities over a person's lifespan. Nonetheless, its applicability to major P-ES is currently restricted due to the lack of water and water pollutant occupancy rates concepts. This study attempts to broaden the scope and robustness of RTF by introducing these missing aspects for enhanced P-ES management. Furthermore, by evaluating changes in RTF value around technological and social dynamics, resources requiring management interventions are identified. The extended RTF's potential is finally demonstrated through case studies involving consumable rice, water flow utilized for generating electricity via hydropower (HP), and sugarcane yielding consumable sugar and molasses with bagasse used to generate electricity. Based on prevailing resource conditions, all cases exhibited resource utilization within the allocated capacity. However, potential strain on specific resources such as land and water use in rice (24.63 and 18.69 years), copper in HP (8.46 years), and land and phosphate-potash minerals use in bagasse (22.66 and 23.56 years) highlights the need for interventions to ensure sustained benefits. The precise influence of water and water pollutants is inherently case and location specific; however, this study emphasized the necessity of integrating water use and availability factors into rice and HP supply-flow assessments. Overall, the enhanced RTF proved to be replicable across P-ESs, quantifying pressures, and guiding management strategies to maintain nature's regenerative capacity while meeting human needs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173852DOI Listing

Publication Analysis

Top Keywords

resources time
8
time footprint
8
provisioning ecosystem
8
ecosystem services
8
occupancy rates
8
resource utilization
8
utilization allocated
8
water water
8
water
7
resources
4

Similar Publications

Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.

Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.

View Article and Find Full Text PDF

Hayata 1916 is a unique bamboo species endemic to Taiwan, typically found at elevations ranging from 500 to 1,500 meters. This study provides a detailed analysis of the complete chloroplast genome of for the first time. The genome spans 139,664 base pairs (bp) and consists of a large single-copy (LSC) region of 83,192 bp, a small single-copy (SSC) region of 12,869 bp, and two inverted repeat (IR) regions, each 21,798 bp in length.

View Article and Find Full Text PDF

Background: Transforming Clinical Practice Guideline (CPG) recommendations into computer readable language is a complex and ongoing process that requires significant resources, including time, expertise, and funds. The objective is to provide an extension of the widely used GIN-McMaster Guideline Development Checklist (GDC) and Tool for the development of computable guidelines (CGs).

Methods: Based on an outcome from the Human Centered Design (HCD) workshop hosted by the Guidelines International Network North America (GIN-NA), a team was formed to develop the checklist extension.

View Article and Find Full Text PDF

Evaluating Tuskegee University's Ongoing Response Strategy to Mitigate Direct and Indirect Impacts of the COVID-19 Pandemic by Using an Integrative Framework Analysis.

J Healthc Sci Humanit

January 2024

Program Manager, Center for Biomedical Research/Research Centers in Minority Institutions (TU CBR/RCMI), Department of Biology, College of Arts and Sciences (CAS), Tuskegee University, Phone: (334) 724-4391, Email:

The emergence of the Novel COVID-19 Pandemic has undoubtedly impacted the lives of individuals across the globe. It has drawn the attention of major public health agencies as they work intensely towards understanding the behavior of the virus causing the disease, while simultaneously establishing ways to curb the spread of the virus among populations. As of the time of writing, 7,949,973 confirmed cases have been reported globally; with the United States (US) contributing to 26.

View Article and Find Full Text PDF

The precise determination of viral titers in virological studies is a critical step to assess the infectious viral concentration of a sample. Although conventional titration methods, such as endpoint dilution or plaque forming units are the gold standards, their widespread use for screening experiments remains limited due to the time-consuming aspect and resource-intensive requirements. This study introduces a rapid and user-friendly high-throughput screening assay for evaluating viral titers.

View Article and Find Full Text PDF