98%
921
2 minutes
20
DNA being the necessary element in cell regeneration, controlled cellular apoptosis DNA binding/cleaving is considered an approach to combat cancer cells. The widely prescribed metallodrug cisplatin has shown interactions with the guanine-N7 center, and a plethora of complexes are continually developed to enhance crosslinking properties as well as covalent and non-covalent interactions. Two pentadentate ligands, L1 (1-(6-(1-benzo[]imidazol-2-yl)pyridin-2-yl)-,-bis(pyridin-2-ylmethyl)methanamine) and L2 (1-(6-(1-methyl-1-benzo[]imidazol-2-yl)pyridin-2-yl)-,-bis(pyridin-2-ylmethyl)methanamine), were synthesized together with their respective copper(II) complexes [1](ClO) and [2](ClO), which crystallized in a trigonal bipyramidal fashion. Different analytical and spectroscopic methods confirmed their formation, and their redox behaviour was also examined. The interactions of salmon sperm DNA (ss-DNA) with these two complexes were explored using absorbance spectroscopy, and they both exhibited a binding affinity () of ∼10 M. Fluorescence quenching experiments with ethidium bromide (EB)-bound DNA (EB-DNA) were also performed, and Stern-Volmer constant () values of 6.93 × 10 and 2.34 × 10 M for [1](ClO) and [2](ClO), respectively, were obtained. Furthermore, DNA conformational changes due to the interactions of both complexes were validated circular dichroism. We also assessed the DNA cleavage property of these complexes, which resulted in the linearization of circular plasmid DNA. This finding was supported by studying the growth of MDA-MB-231 breast cancer cells upon treatment with both Cu(II) complexes; IC values of 5.34 ± 1.02 μM and 0.83 ± 0.18 μM were obtained for [1](ClO) and [2](ClO), respectively. This validates their affinity towards DNA, and these insights can be further utilized for non-platinum based economical metallodrug development based on first row transition metals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4dt00984c | DOI Listing |
Diagn Pathol
September 2025
Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
Background: Gastric cancer is one of the most common cancers worldwide, with its prognosis influenced by factors such as tumor clinical stage, histological type, and the patient's overall health. Recent studies highlight the critical role of lymphatic endothelial cells (LECs) in the tumor microenvironment. Perturbations in LEC function in gastric cancer, marked by aberrant activation or damage, disrupt lymphatic fluid dynamics and impede immune cell infiltration, thereby modulating tumor progression and patient prognosis.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFEMBO J
September 2025
Department of Biology, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece.
In the presence of chromatin bridges in cytokinesis, human cells retain actin-rich structures (actin patches) at the base of the intercellular canal to prevent chromosome breakage. Here, we show that daughter nuclei connected by chromatin bridges are under mechanical tension that requires interaction of the nuclear membrane Sun1/2-Nesprin-2 Linker of Nucleoskeleton and Cytoskeleton (LINC) complex with the actin cytoskeleton, and an intact nuclear lamina. This nuclear tension promotes accumulation of Sun1/2-Nesprin-2 proteins at the base of chromatin bridges and local enrichment of the RhoA-activator PDZ RhoGEF through PDZ-binding to cytoplasmic Nesprin-2 spectrin repeats.
View Article and Find Full Text PDFEMBO J
September 2025
Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences; Wuhan University, Wuhan, 430071, China.
Inadequate antigen presentation by MHC-I in tumor microenvironment (TME) is a common immune escape mechanism. Here, we show that glycine decarboxylase (GLDC), a key enzyme in glycine metabolism, functions as an inhibitor of MHC-I expression in EGFR-activated tumor cells to induce immune escape by a mechanism independent of its enzymatic activity. Upon EGFR activation, GLDC is phosphorylated by SRC and subsequently translocated to the nucleus in human NSCLC cells.
View Article and Find Full Text PDFCancer Metastasis Rev
September 2025
Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-Sur-Yvette, 91198, France.
Integrins constitute a large and diverse family of cell adhesion molecules that play essential roles in regulating tumor cell differentiation, migration, proliferation, and neovascularization. Tumor cell-derived exosomes, a subtype of extracellular vesicles, are enriched with integrins that reflect their cells of origin. These exosomal integrins can promote extracellular matrix remodeling, immune suppression, and vascular remodeling and are closely linked to tumor progression and metastasis, acting as pivotal players in mediating organ-specific metastasis.
View Article and Find Full Text PDF