Failed Induction of the T1 System in T2 Dominant Patients: The Cancer-Permissive Immune Macroenvironment.

Integr Med (Encinitas)

DC; Program on Integrative Medicine, Department of Physical Medicine and Rehabilitation, University of North Carolina School of Medicine, Chapel Hill, NC.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tumor microenvironment infiltration by cells of the T helper cell type 1 (T1) system, including T1 cells, M1 macrophages, natural killer cells, and CD8 T cells, is associated with better cancer prognosis. In contrast, tumor microenvironment infiltration by cells of the T2 system, including T2 cells, M2 macrophages, and innate lymphoid cells type 2, as well as immune suppressive myeloid-derived suppressor cells and regulatory T cells, is associated with poorer cancer prognosis. Beyond the tumor itself and a myriad of other modifying factors, such as genetic and epigenetic influences on tumorigenesis, the overall immune state of the patient, termed the macroenvironment, has also been shown to significantly influence cancer outcomes. Alterations in the tricarboxylic acid (TCA) cycle (TCA cycle breaks) involving loss of function of succinate dehydrogenase, isocitrate dehydrogenase, and fumarate hydratase have been shown to be associated with an intracellular metabolic shift away from oxidative phosphorylation and into glycolysis in cells that are transforming into cancer cells. The same loss of function of succinate dehydrogenase and isocitrate dehydrogenase has also been identified as inducing a shift in macrophages toward glycolysis that is associated with M1 macrophage polarization. M1 macrophages make interleukin 12, which stimulates T1 cells and natural killer cells to produce interferon gamma (IFN-γ), which in turn stimulates M1 macrophage activity, forming an activation loop. IFN-γ also drives activation of CD8 T cells. Thus, M1 macrophage activation initiates and sustains activation of the T1 system of cells. In this fashion, TCA cycle breaks at succinate dehydrogenase and isocitrate dehydrogenase that promote cellular transformation into cancer cells are also associated with upregulation of the T1 system that provides anti-cancer immune surveillance. The T1 and T2 systems are known to inhibit each other's activation. It is this author's hypothesis that, in patients whose macroenvironment is sufficiently T2-dominant, the metabolic shift toward glycolysis induced by TCA cycle breaks that gives rise to mutagenic changes in tissue parenchymal cells is not counterbalanced by adequate activation of M1 macrophages, thus giving rise to cancer cell development. For instance, the atopic T2-high asthma phenotype, a T2 dominance-based comorbidity, is associated with a more than doubled incidence of colon, breast, lung, and prostate cancer, compared with non-asthmatics. Failure of TCA cycle breaks to induce M1 polarization of tissue-resident macrophages yields a tissue environment in which the tissue-resident macrophages fail to routinely perform M1-associated functions such as phagocytizing newly developing cancer cells. Failure of M1 phenotypic expression in both tissue-resident macrophages and monocyte-derived macrophages recruited to the tumor microenvironment yields both a loss of direct antitumor M1 macrophage actions and failure of T1 system activation in general, including failure of CD8 T cell activation, yielding a cancer-permissive tumor microenvironment and a poorer prognosis in patients with existing cancers. This paper proposes a conceptual framework that connects established elements in the existing research and points to the utility of a patient profiling process, aimed at personalization of treatment through identification and targeting of elements in each patient's tumor microenvironment and macroenvironment that contribute to unfavorable prognosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193407PMC

Publication Analysis

Top Keywords

tumor microenvironment
20
tca cycle
20
cells
18
cycle breaks
16
cells associated
12
succinate dehydrogenase
12
dehydrogenase isocitrate
12
isocitrate dehydrogenase
12
cancer cells
12
tissue-resident macrophages
12

Similar Publications

Violacein-Loaded Outer Membrane Vesicles from Exhibit Potent Anti-Melanoma Activity and .

ACS Biomater Sci Eng

September 2025

Departamento de Genética, Evolução, Microbiologia e Immunologia, Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo 13083-862, Brazil.

Violacein exhibits antitumor activity, indicating potential for future clinical application. However, an efficient delivery system is required for the clinical use of this hydrophobic compound. Effective delivery systems can enhance the solubility and bioavailability of hydrophobic compounds like violacein, facilitating its clinical application for antitumor therapy.

View Article and Find Full Text PDF

Oncometabolites are aberrant metabolic byproducts that arise from mutations in enzymes of the tricarboxylic acid (TCA) cycle or related metabolic pathways and play central roles in tumor progression and immune evasion. Among these, 2-hydroxyglutarate (2-HG), succinate, and fumarate are the most well-characterized, acting as competitive inhibitors of α-ketoglutarate-dependent dioxygenases to alter DNA and histone methylation, cellular differentiation, and hypoxia signaling. More recently, itaconate, an immunometabolite predominantly produced by activated macrophages, has been recognized for its dual roles in modulating inflammation and tumor immunity.

View Article and Find Full Text PDF

Pancreatic cancer is a highly aggressive malignancy with a dismal prognosis, characterized by a complex tumor microenvironment that promotes immunosuppression and limits the efficacy of immune checkpoint blockade (ICB) therapy. Fibroblast activation protein (FAP) is overexpressed in the tumor stroma and represents a promising target for therapeutic intervention. Here, we developed a novel antibody-drug conjugate (ADC) targeting FAP, and investigated its anti-tumor activity and ability to enhance ICB efficacy in pancreatic cancer.

View Article and Find Full Text PDF

Targeted hotspot profiling reveals a functionally relevant mutation in bladder cancer.

Urol Oncol

September 2025

Nutritional, Genes and Human Disease Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh. Electronic address:

Background: Understanding the mutational landscape is critical for elucidating the molecular mechanisms driving cancer progression. This study aimed to profile somatic mutations in bladder cancer patients (N=7) from Bangladesh to provide insights into the genetic alterations underlying this malignancy.

Methods: We performed targeted sequencing of 50 oncogenes and tumor suppressor genes using the Ion AmpliSeq Cancer Hotspot Panel v2 on tumor and matched blood samples from seven bladder cancer patients.

View Article and Find Full Text PDF

Prostate cancer (PC) is notoriously known for exhibiting an immunologically cold phenotype in the tumor immune microenvironment (TIME), leading to the need for interventions to enhance immunotherapy efficacy. Recent findings by Zhao in the identified stromal monoamine oxidase A (MAOA), a key enzyme that degrades monoamine neurotransmitters and plays a role in the neuroendocrine system, as a critical regulator of the immune response to PC. Altering MAOA levels in myofibroblastic cancer-associated fibroblasts, either genetically or pharmacologically, can reprogram PC's TIME to modulate CD8 T cell-mediated cytotoxicity through the WNT5A-Ca²-NFATC1 signaling axis, highlighting the stromal influences on CD8 T cell cytotoxic activity within the TIME.

View Article and Find Full Text PDF