98%
921
2 minutes
20
Signalosomes are high-order protein machineries involved in complex mechanisms controlling regulated immune defense and cell death execution. The immune response is initiated by the recognition of exogeneous or endogenous signals, triggering the signalosome assembly process. The final step of signalosome fate often involves membrane-targeting and activation of pore-forming execution domains, leading to membrane disruption and ultimately cell death. Such cell death-inducing domains have been thoroughly characterized in plants, mammals and fungi, notably for the fungal cell death execution protein domain HeLo. However, little is known on the mechanisms of signalosome-based immune response in bacteria, and the conformation of cell death executors in bacterial signalosomes is still poorly characterized. We recently uncovered the existence of NLR signalosomes in various multicellular bacteria and used genome mining approaches to identify putative cell death executors in Streptomyces olivochromogenes. These proteins contain a C-terminal amyloid domain involved in signal transmission and a N-terminal domain, termed BELL for Bacteria analogous to fungal HeLL (HeLo-like), presumably responsible for membrane-targeting, pore-forming and cell death execution. In the present study, we report the high yield expression of S. olivochromogenes BELL2 and its characterization by solution NMR spectroscopy. BELL is folded in solution and we report backbone and sidechain assignments. We identified five α-helical secondary structure elements and a folded core much smaller than its fungal homolog HeLo. This study constitutes the first step toward the NMR investigation of the full-length protein assembly and its membrane targeting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12104-024-10183-5 | DOI Listing |
BMC Mol Cell Biol
September 2025
School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
Retinitis pigmentosa (RP) affects around 1 in 4000 individuals and represents approximately 25% of cases of vision loss in adults, through death of retinal rod and cone photoreceptor cells. It remains a largely untreatable disease, and research is needed to identify potential targets for therapy. Mutations in 94 different genes have been identified as causing RP, including AGBL5 which encodes the main deglutamylase that regulates and maintains functional levels of cilia tubulin glutamylation, which is essential to initiate ciliogenesis, maintain cilia stability and motility.
View Article and Find Full Text PDFSci China Life Sci
September 2025
MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
Tomato brown rugose fruit virus (ToBRFV) overcomes all known tomato resistance genes, including the durable Tm-2, posing a serious threat to global tomato production. Here, we employed in vitro random mutagenesis to evolve the Tm-2 leucine-rich repeat (LRR) domain and screened ∼8,000 variants for gain-of-function mutants capable of recognizing the ToBRFV movement protein (MP) and triggering hypersensitive cell death. We identified five such mutants.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFBr J Cancer
September 2025
Institute of Life Sciences, Bhubaneswar, Odisha, India.
Background: Docetaxel is the most common chemotherapy regimen for several neoplasms, including advanced OSCC (Oral Squamous Cell Carcinoma). Unfortunately, chemoresistance leads to relapse and adverse disease outcomes.
Methods: We performed CRISPR-based kinome screening to identify potential players of Docetaxel resistance.
Cell Death Differ
September 2025
Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system (CNS) characterized by inflammatory demyelination and progressive neurodegeneration. Although current disease-modifying therapies modulate peripheral autoimmune responses, they are insufficient to fully prevent tissue specific neuroinflammation and long-term neuronal and oligodendrocyte loss. Growing evidence implicates various regulated cell death (RCD) pathways, including apoptosis, necroptosis, pyroptosis, and ferroptosis, not only as downstream consequences of chronic inflammation, but also as active drivers of demyelination, axonal injury, and glial dysfunction in MS.
View Article and Find Full Text PDF