Enhanced Photocatalytic Removal of U(VI) from Real Radioactive Wastewater by Modulating the Surface Charge Microenvironment in Porphyrin-Based Hydrogen-Bonded Organic Framework.

ACS Appl Mater Interfaces

Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Reduction of soluble U(VI) to insoluble U(IV) based on photocatalysts is a simple, environmentally friendly, and efficient method for treating radioactive wastewater. The present study involved the systematic comparison of the photoelectric properties of three metalloporphyrins with different metal centers and the synthesis of a novel porphyrin-based hydrogen-bonded organic framework (Ni-pHOF) photocatalyst by modulating the surface charge microenvironment in porphyrin for enhanced photocatalytic removal of U(VI) from wastewater. Compared to the metal-free HOF, the surface charge microenvironment around the Ni atom in Ni-pHOF accelerated the reduction kinetics of U(VI) under visible light illumination at the initial moment, showing a high removal rate, even in air. The removal rate of U(VI) from aqueous solution by Ni-pHOF can achieve over 98% in the presence of coexisting nonoxidizing cations and only decreased by less than 8% after five cycles, exhibiting high selectivity and good reusability. Furthermore, Ni-pHOF can remove 86.74% of U(VI) from real low-level radioactive wastewater after 120 min of illumination, showcasing practical application potential. Density functional theory (DFT) calculations and electron paramagnetic resonance (EPR) spectra indicated that modulating the surface charge microenvironment in Ni-pHOF through porphyrin metallization is conducive to improving the charge separation efficiency, prompting more e and O to participate in the reduction reaction of U(VI). This work provides new insights into the metallization of porphyrin-based HOFs and paves a new way for the tailoring of porphyrin-based HOFs/COFs by modulating the surface charge microenvironment to achieve efficient recovery of U(VI) from real radioactive wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c06992DOI Listing

Publication Analysis

Top Keywords

surface charge
20
charge microenvironment
20
radioactive wastewater
16
modulating surface
16
uvi real
12
enhanced photocatalytic
8
photocatalytic removal
8
uvi
8
removal uvi
8
real radioactive
8

Similar Publications

This study introduces a back filter installed at the end of the exhaust pipe of city buses. The impact of the metal type used in its construction on the absorption of suspended particles and the reduction of sulfides in diesel engine exhaust gases is investigated. The back filter is constructed from three metals: copper, zinc, and nickel.

View Article and Find Full Text PDF

Investigation into the Regulation of Ag NPs/ZnO NRs/GaN Heterostructure SERS Substrate via Pyroelectric Effects.

J Phys Chem Lett

September 2025

Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China.

Heterostructures have emerged as promising contenders for surface-enhanced Raman scattering (SERS) applications. Nevertheless, the construction of a composite SERS substrate with well-matched energy levels persists as a challenge, primarily due to the restricted selection of SERS-active materials. In this study, we successfully synthesized a Ag nanoparticles (NPs)/ZnO nanorods (NRs)/GaN heterojunction featuring type II staggered energy bands, which provides an outstanding platform for efficient SERS detection.

View Article and Find Full Text PDF

The molecular electrometer at 40.

Biochim Biophys Acta Biomembr

September 2025

Department of Chemistry, University of Toronto, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, L5L 1C6, Canada. Electronic address:

In 1987 Seelig and colleagues proposed that the phosphocholine headgroup of phosphatidylcholine behaved as a universal sensor of surface electrostatic charge, both cationic and anionic, in lipid bilayers (J. Seelig, P.M.

View Article and Find Full Text PDF

Construction of melem/BiVO/g-CN photocatalyst with a conjugated S-scheme charge transfer pathway for boosting photocatalytic activity under LED light irradiation.

Environ Res

September 2025

Center for High Technology Development, Nguyen Tat Thanh University, Ho Chi Minh City Hi-Tech Park, Ho Chi Minh City, Vietnam; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam. Electronic address:

The development of novel multijunction heterostructure photocatalysts is critical for the efficient degradation of organic pollutants, attributed to their ability to enhance the separation of photogenerated electron-hole pairs. In our study, a ternary composite, melem/BiVO/g-CN (BVO/CNMH), was synthesized via an acid-soaking method followed by calcination, using g-CN as a sacrificial precursor in the presence of BiVO. This approach yielded a porous, interconnected architecture in BVO/CNMH.

View Article and Find Full Text PDF

Simultaneous removal of NO and propane by solid electrolyte cells with LaPrBaNiO bifunctional electrodes.

J Hazard Mater

September 2025

School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Environmental Chemistry and Low Carbon Technology, Zhengzhou 450001, China. Electronic address:

Solid electrolyte cell is a novel gas purification approach, which has unique superiority in simultaneous nitrogen oxides (NO) and volatile organic compounds (VOCs) removal. The development of effective electrode materials and the comprehensive understanding of reaction mechanisms are essential to advancing this technology. In this study, LaPrBaNiO (x = 0, 0.

View Article and Find Full Text PDF