98%
921
2 minutes
20
A key strategy for minimizing our reliance on precious metals is to increase the fraction of surface atoms and improve the metal-support interface. In this work, we employ a solvent/ligand/counterion-free method to deposit copper in the atomic form directly onto a nanotextured surface of graphitized carbon nanofibers (GNFs). Our results demonstrate that under these conditions, copper atoms coalesce into nanoparticles securely anchored to the graphitic step edges, limiting their growth to 2-5 nm. The resultant hybrid Cu/GNF material displays high selectivity in the CO reduction reaction (CORR) for formate production with a faradaic efficiency of ~94% at -0.38 V vs RHE and a high turnover frequency of 2.78 × 10h. The Cu nanoparticles adhered to the graphitic step edges significantly enhance electron transfer to CO. Long-term CORR tests coupled with atomic-scale elucidation of changes in Cu/GNF reveal nanoparticles coarsening, and a simultaneous increase in the fraction of single Cu atoms. These changes in the catalyst structure make the onset of the CO reduction potential more negative, leading to less formate production at -0.38 V vs RHE, correlating with a less efficient competition of CO with HO for adsorption on single Cu atoms on the graphitic surfaces, revealed by density functional theory calculations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11190262 | PMC |
http://dx.doi.org/10.1038/s42004-024-01218-y | DOI Listing |
Nanoscale
September 2025
Department of Chemical Sciences, Ariel University, Ariel, Israel.
Electrocatalytic synthesis of ammonia is a sustainable, cost-effective alternative method for producing renewable electricity and can operate under milder conditions than the traditional Haber-Bosch method. We report direct laser-induced synthesis of copper nanocatalysts embedded in graphitic films for the synthesis of ammonia. Laser-induced metal-embedded graphene (m-LIG) offers many advantages, such as fast and simple synthesis, shape design of the electrodes, and direct printing on any substrate, including thermally sensitive plastics.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2025
Selcuk University, Faculty of Medicine, Department of Medical Biochemistry, Konya, Turkey. Electronic address:
This study investigates the cytotoxic and biochemical effects of PEGylated graphene oxide sol-gel (SJ-go) nanoparticles, curcumin, and quercetin on BEAS-2B human bronchial epithelial. In this work, a new graphene oxide nanocomposite (SJ-go) was produced using the sol-gel method through a one-step reaction. These hybrid sol-gel systems include graphite, triethyl orthosilicate (TEOS), and polyethylene glycol (PEG) having a molecular weight of 8000 g/mol.
View Article and Find Full Text PDFSmall
September 2025
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
Iron-carbon materials have emerged as promising heterogeneous Fenton-like catalysts for the removal of emerging organic contaminants. However, their practical applications are substantially hindered by complex preparation procedures and irreversible deactivation of iron centers. Herein, a novel double-layer core-shell catalyst Fe@FeC@Graphite (Fe-CTS-3000) is one-step synthesized by a high-temperature carbothermal shock (CTS) strategy.
View Article and Find Full Text PDFJ Mol Model
September 2025
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350116, People's Republic of China.
Context: This study systematically investigates the growth mechanism of nitrogen-doped graphene in a plasma environment, with a particular focus on the effects of temperature and hydrogen radicals on its structural evolution. The results reveal that, at 3000 K, the formation of nitrogen-doped graphene proceeds through three stages: carbon chain elongation, cyclization, and subsequent condensation into planar structures. During this process, nitrogen atoms are gradually incorporated into the carbon network, forming various doping configurations such as pyridinic-N, pyrrolic-N, and graphitic-N.
View Article and Find Full Text PDFSmall
September 2025
Department of Energy Science, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
Water-washing effectively removes surface residual lithium from high-Ni LiNiCoMnO (NCM) cathodes; however, it inevitably degrades the electrochemical performance. To address this issue, integrated strategies targeting the conversion of surface residual lithium into artificial coating layers on high-Ni NCM cathodes have been proposed; however, these require further processing, thus hindering their industrial application. This study proposes a trailblazing strategy for directly converting residual lithium into a LiF layer simultaneously formed on both the surface of secondary particles and the interfaces between the primary particles of high-Ni NCM, without requiring further processing.
View Article and Find Full Text PDF