Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Solid electrolytes may be the answer to overcome many obstacles in developing the next generation of renewable batteries. A novel composite solid electrolyte (CSE) composed of a poly(vinylidene fluoride) (PVDF) base with an active nanofiber filler of aluminum-doped garnet Li ceramic, Li salt lithium -(trifluoromethanesulfonyl)imide (LiTFSI), Li fluoride (LiF) stabilizing additive, and plasticizer sulfolane was fabricated. In a Li|CSE|LFP cell with this CSE, a high capacity of 168 mAh g with a retention of 98% after 200 cycles was obtained, representing the best performance to date of a solid electrolyte with a PVDF base and a garnet inorganic filler. In a Li metal cell with Si and Li, it yielded a discharge capacity of 2867 mAh g and was cycled 60 times at a current density of 100 mAh g, a significant step forward in utilizing a solid electrolyte of any kind with the desirable Si anode. In producing this CSE, the components and fabrication process were chosen to have a lower cost and improved safety and environmental impact compared with the current state-of-the-art Li-ion battery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c04145DOI Listing

Publication Analysis

Top Keywords

solid electrolyte
16
composite solid
8
pvdf base
8
solid
5
comparatively low
4
low cost
4
cost easy-to-fabricate
4
easy-to-fabricate environmentally
4
environmentally friendly
4
friendly pvdf/garnet
4

Similar Publications

Single-Molecule Dual-Anchor Design Enables Extreme-Condition Lithium Metal Batteries Through Solvation Reconstruction and Cathode Polymerization.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, P.R. China.

Lithium metal batteries (LMBs) have emerged as the most promising candidate for next-generation high-energy-density energy storage systems. However, their practical implementation is hindered by the inability of conventional carbonate electrolytes to simultaneously stabilize the lithium metal anode and LiNiCoMnO (NCM811) cathode interfaces, particularly under extreme operating conditions. Herein, we present a transformative molecular design using 3,5-difluorophenylboronic acid neopentyl glycol ester (DNE), which uniquely integrates dual interfacial stabilization mechanisms in a single molecule.

View Article and Find Full Text PDF

Ether-based electrolytes are widely acknowledged for their potential to form stable solid electrolyte interfaces (SEIs) for stable anode performance. However, conventional ether-based electrolytes have shown a tendency for cation-solvent co-intercalation phenomena on graphite electrodes, resulting in lower capacity and higher voltage platforms compared to those of neat cation insertion in ester-based electrolytes. In response, we propose the development of weakly solvating ether solvents to weaken the interaction between cations and solvents, thereby suppressing co-intercalation behavior.

View Article and Find Full Text PDF

Fluorinated Imidazolidinium Cations as a Fluorine-Lean Interface Repairing Agent for Li-Metal Batteries.

ACS Appl Mater Interfaces

September 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.

Li-metal batteries promise ultrahigh energy density, but their application is limited by Li-dendrite growth. Theoretically, fluorine-containing anions such as bis(fluorosulfonyl)imide (FSI) in electrolytes can be reduced to form LiF-rich solid-electrolyte interphases (SEIs) with high Young's modulus and ionic conductivity that can suppress dendrites. However, the anions migrate toward the cathode during the charging process, accompanied by a decrease in the concentration of interfacial anions near the anode surface.

View Article and Find Full Text PDF

Ultrafast Al⁺ Conduction through Cooperative Bonding in Disordered Polycarbonate-Polyether Electrolytes.

Small Methods

September 2025

Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics, Science and Technology, Hebei University, Baoding, 071002, China.

As a new generation of high-energy-density energy storage system, solid-state aluminum-ion batteries have attracted much attention. Nowadays polyethylene oxide (PEO)-based electrolytes have been initially applied to Lithium-ion batteries due to their flexible processing and good interfacial compatibility, their application in aluminum-ion batteries still faces problems. To overcome the limitations in aluminum-ion batteries-specifically, strong Al coordination suppressing ion dissociation, high room-temperature crystallinity, and inadequate mechanical strength-this study develops a blended polymer electrolyte (BPE) of polypropylene carbonate (PPC) and PEO.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) exhibit outstanding structural tunability, clearly defined ion pathways, and remarkable thermal/chemical stabilities, rendering them highly promising candidates for applications in solid-state electrolytes. However, it remains a challenge to develop a versatile method to incorporate both ionic groups and electron-withdrawing units into a single framework for effectively improving the lithium-ion conductivity. Herein, a series of novel [3+3] defective COFs is successfully synthesized featuring active amine/aldehyde anchoring sites for subsequent post-modification, and regulates the ion conductivity through elaborately tuning the anionic/cationic groups and weak/strong electron-withdrawing units.

View Article and Find Full Text PDF