98%
921
2 minutes
20
The aim of this paper was to explore the application of multi-channel synchronized dynamic strain gauges in monitoring the neutral axis (N.A.) position of prestressed concrete box girders. The N.A. position has recently been proposed as an indicator for monitoring the health of bridge structures. Laboratory experiments were conducted on a prestressed T-beam under different prestress level conditions to investigate the correlation between the prestress magnitude and the N.A. position. In the development of the multi-channel synchronized dynamic strain gauges, edge computing was employed to significantly reduce the amount of data transmitted from the sensor nodes on-site. In edge computing, only the dynamic strain response caused by the maximum vehicle load in each minute is transmitted. This approach greatly enhances the monitoring efficiency and enables the realization of on-site non-computer-based monitoring systems. The laboratory test results of the prestressed T-beam showed that the N.A. position tends to move slightly downward as the prestress force increases. In other words, when the prestress force decreases due to loss, the N.A. position exhibits a slight upward movement. This study selected a newly constructed prestressed box girder as the subject for on-site measurement of the N.A. position using multi-channel synchronized dynamic strain gauges shortly after the prestress was applied. The on-site monitoring data indeed revealed a gradual upward movement of the N.A. position. This phenomenon confirmed that soon after the completion of prestressed concrete bridges, there is a gradual loss of prestress due to the significant shrinkage and creep effects of the early-age concrete. The on-site monitoring result aligned with the findings from the laboratory experiments, where the N.A. position was observed to move upward as the prestress decreased.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11175041 | PMC |
http://dx.doi.org/10.3390/s24113489 | DOI Listing |
Aerosp Med Hum Perform
September 2025
Introduction: Military fast jet pilots face significant physical challenges, including high Gz accelerations during dynamic maneuvers. The objectives of this study were threefold: 1) to record pilot movements during real flights, 2) to quantify head and trunk movements under standardized Gz conditions and during basic fighter maneuvers (BFMs), and 3) to categorize compensatory strategies used to mitigate physical strain.
Methods: A total of 20 Eurofighter pilots (mean age: 28.
Int J Pharm
September 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Instit
Smart hydrogels have advanced rapidly in recent years. However, systems responsive to a single stimulus are typically triggered by specific cues, limiting their adaptability in complex and dynamic biological environments. To overcome this limitation, this study developed a dual-responsive hydrogel sensitive to both temperature and mechanical stress.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
September 2025
Second Institute of Oceanography, Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Hangzhou 310018, PR China.
A Gram-staining-negative, non-motile, aerobic, rod-shaped bacterium, designated 14752, was isolated from a saline lake in Xinjiang Uygur Autonomous Region, China. The strain was subjected to a taxonomic study using a polyphasic approach. Strain 14752 was able to grow at 4-40 ℃ (optimum 28 ℃), pH 6.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2025
AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, Aachen, 52074, Germany.
Microbial co-cultures provide significant advantages over commonly used axenic cultures in biotechnological processes, including increased productivity and access to novel natural products. However, differentiated quantification of the microorganisms in co-cultures remains challenging using conventional measurement techniques. To address this, a fluorescence-based approach was developed to enable the differentiated online monitoring of microbial growth in co-cultures.
View Article and Find Full Text PDFArch Microbiol
September 2025
División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Zip Code 36050, Guanajuato, Mexico.
Plasmids are fundamental to molecular biology and biotechnology, playing a crucial role in bacterial evolution. Some plasmids are linked to complex cellular dynamics, including pathogenicity islands, antibiotic resistance, and gene mobilization. This study reports the isolation and sequencing of two cryptic plasmids with different electrophoretic mobilities from the Escherichia coli clinical isolate O55.
View Article and Find Full Text PDF