98%
921
2 minutes
20
While edible algae might seem low in fat, the lipids they contain are crucial for good health and preventing chronic diseases. This study introduces a binary matrix to analyze all the polar lipids in both macroalgae (Wakame-, Dulse-, and Nori- spp.) and microalgae (Spirulina-, and Chlorella-) using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The key lies in a new dual matrix made by combining equimolar amounts of 1,5-diaminonaphthalene (DAN) and 9-aminoacridine (9AA). This combination solves the limitations of single matrices: 9AA is suitable for sulfur-containing lipids and acidic phospholipids, while DAN excels as an electron-transfer secondary reaction matrix for intact chlorophylls and their derivatives. By employing the equimolar binary matrix, a wider range of algal lipids, including free fatty acids, phospholipids, glycolipids, pigments, and even rare arsenosugarphospholipids were successfully detected, overcoming drawbacks related to ion suppression from readily ionizable lipids. The resulting mass spectra exhibited a good signal-to-noise ratio at a lower laser fluence and minimized background noise. This improvement stems from the binary matrix's ability to mitigate in-source decay effects, a phenomenon often encountered for certain matrices. Consequently, the data obtained are more reliable, facilitating a faster and more comprehensive exploration of algal lipidomes using high-throughput MALDI-MS/MS analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11172705 | PMC |
http://dx.doi.org/10.3390/ijms25115919 | DOI Listing |
Environ Geochem Health
September 2025
Department of Chemistry, Government Arts College(A), Salem, Tamil Nadu, 636007, India.
A CoO/AgMoO/CeOternary nanocomposites photocatalyst was successfully synthesized through a straightforward ethanol-assisted chemical method. Comprehensive characterization of its structural and optical properties was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. XRD analysis confirmed the presence of CoO, AgMoO and CeO in the ternary composite sample.
View Article and Find Full Text PDFPoult Sci
September 2025
College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, Zhejiang 310020, China.
During the vaccine production through the chick embryo cultivation method, harmful cracks may occur from the perforation of a trocar on the eggshell, around the impact hole, leading to the failure of cultivation. To detect the perforative cracks, this study proposes a method based on acoustic responses. By stimulating the embryo eggs and collecting the acoustic signals, 7 characteristic values were extracted from the time and the frequency domains: The maximum value in the time domain; The difference in the time domain; The frequency-domain peaks, 870 Hz, 1250 Hz, 1470 Hz and 1770 Hz; The mean value of the waveform.
View Article and Find Full Text PDFNanomicro Lett
September 2025
Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
September 2025
Robotics Institute, Ningbo University of Technology, Ningbo, China.
Surface electromyography (sEMG) holds great potential in walking function evaluation. Compressed sensing (CS) leverages the sparsity of signals to decrease the number of samples required. In this study, a sEMG CS algorithm for spinal cord injury (SCI) patients based on regularized orthogonal matching pursuit (ROMP) was introduced.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
The Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE) - the Portuguese Research Centre for Sustainable Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal. Electronic address:
Background: When using semiconductor quantum dots (QDs) for single-analyte sensing, recognition is commonly achieved through interactions with capping ligands attached to the QDs surface. These ligands form an organic layer that provides stability in solution and assures selectivity by binding the target analyte via surface functional groups. However, a common analytical challenge arises in the subsequent stage of the QD-based sensing scheme.
View Article and Find Full Text PDF