A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enhanced multi view 3D reconstruction with improved MVSNet. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although 3D reconstruction has been widely used in many fields as a key component of environment perception, existing technologies still have the potential for further improvement in 3D scene reconstruction. We propose an improved reconstruction algorithm based on the MVSNet network architecture. To glean richer pixel details from images, we suggest deploying a DE module integrated with a residual framework, which supplants the prevailing feature extraction mechanism. The DE module uses ECA-Net and dilated convolution to expand the receptive field range, performing feature splicing and fusion through the residual structure to retain the global information of the original image. Moreover, harnessing attention mechanisms refines the 3D cost volume's regularization process, bolstering the integration of information across multi-scale feature volumes, consequently enhancing depth estimation precision. When assessed our model using the DTU dataset, findings highlight the network's 3D reconstruction scoring a completeness (comp) of 0.411 mm and an overall quality of 0.418 mm. This performance is higher than that of traditional methods and other deep learning-based methods. Additionally, the visual representation of the point cloud model exhibits marked advancements. Trials on the Blended MVS dataset signify that our network exhibits commendable generalization prowess.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189500PMC
http://dx.doi.org/10.1038/s41598-024-64805-yDOI Listing

Publication Analysis

Top Keywords

reconstruction
5
enhanced multi
4
multi view
4
view reconstruction
4
reconstruction improved
4
improved mvsnet
4
mvsnet reconstruction
4
reconstruction fields
4
fields key
4
key component
4

Similar Publications