Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The reverse bias stability is a key concern for the commercialization and reliability of halide perovskite photovoltaics. Here, the robustness of perovskite-silicon tandem solar cells to reverse bias electrical degradation down to -40 V is investigated. The two-terminal tandem configuration, with the perovskite coupled to silicon, can improve the solar cell resistance to severe negative voltages when the tandem device is properly designed. While perovskite cells typically exhibit early reverse bias breakdown voltages, the serial connection with silicon cells with large shunt resistances and high voltage breakdown limits their negative polarization and prevent the passage of large current densities when reverse biased. The importance of careful optical design is illustrated, with bottom-limited conditions required to prevent the perovskite top cell from exploring its own breakdown. This aspect is of great importance in the case of partial shading events when the solar spectrum is richer in the IR components than the standard AM1.5G. Notably, 100% of efficiency retained after polarization at -40 V in different stressing conditions is observed. The results presented suggest that standard industrial bypass diode schemes may be compatible with silicon/perovskite tandem photovoltaics and provide new guidelines for the standardization of the stressing protocols.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336948PMC
http://dx.doi.org/10.1002/advs.202401175DOI Listing

Publication Analysis

Top Keywords

reverse bias
16
tandem solar
8
solar cells
8
cells reverse
8
bias stability
8
optical design
8
tandem
5
reverse
5
silicon perovskite
4
perovskite tandem
4

Similar Publications

The 180° switching of the perpendicular Néel vector induced by the spin-orbit torque (SOT) presents significant potential for ultradense and ultrafast antiferromagnetic SOT-magnetoresistive random-access memory. However, its experimental realization remains a topic of intense debate. Here, unequivocal evidence is provided for the SOT-induced 180° switching of the perpendicular Néel vector in collinear antiferromagnetic CrO in a Pt/CrO/Co trilayer structure.

View Article and Find Full Text PDF

The current guidelines for cardiovascular disease prevention by the European Society of Cardiology highlight the undisputable benefits of exercise and a physically active lifestyle for cardiovascular risk reduction. In addition to the health benefits of physical activity, observational data suggests that regular physical activity lowers all-cause mortality. However, this was not confirmed by Mendelian randomization studies and randomized controlled trials.

View Article and Find Full Text PDF

Background: Atherosclerosis (AS) is a leading risk factor for cardiovascular diseases globally, characterised by the accumulation of lipids and cholesterol in arterial walls, causing vascular narrowing and sclerosis along with chronic inflammation; this leads to increased risk of heart disease and stroke, significantly impacting patients' health. Danxia Tiaoban Decoction (DXTB), a traditional Chinese medicine (TCM) formula, has demonstrated positive clinical effects in treating AS; however, its mechanisms of action remain unclear.

Objective: To explore the potential mechanisms of action of DXTB in treating AS through multi-omics integration and experimental validation.

View Article and Find Full Text PDF

Multijunction photoelectrodes, which generate active photocarriers with sufficient energy to drive unassisted solar-fuel conversion, represent a promising avenue for sustainable energy applications. However, achieving controllable p/n-type doping and high-quality growth remains a challenge for most emerging metal oxide semiconductors. In this study, we demonstrate the creation of in-plane ferroelectric p/n homojunction superstructures in BiFeO (BFO) films, enabling bias-free photoelectrochemical (PEC) reactions.

View Article and Find Full Text PDF

A more comprehensive understanding of the causal relationships between body mass index (BMI) and sick leave is needed. We aimed to examine the effect of BMI on the risk of cause-specific and all-cause long-term sick leave using an instrumental variable approach. The study included 21,918 adults participating in the two latest surveys of the population-based HUNT Study (HUNT3, 2006-2008 and HUNT4, 2017-2019) linked with registry data on cause-specific sick leave, including musculoskeletal and mental disorders.

View Article and Find Full Text PDF