Solvent-free mechanochemistry for the preparation of mixed-ligand cuboctahedral porous coordination cages.

Chem Commun (Camb)

Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study investigates post-synthetic ligand exchange in a series of copper(II) and chromium(II) cuboctahedral cages of the formula M(R-bdc) through solvent-free mechanochemistry for the preparation of mixed-ligand cages. While solvent-based ligand exchange does not proceed when the cages are insoluble or when they are dissolved in non-coordinating solvents, solvent-free mechanochemistry can be used to prepare a number of mixed-ligand cages featuring a variety of functional groups regardless of cage solubility. We further extend this strategy to intercage ligand exchange reactions where the solid-state reaction of cages proceeds in just ten minutes while corresponding solvent-based reactions require more than one week of reaction time. The results highlight mechanochemically-facilitated ligand exchange as an exceptionally facile and efficient method for the production of mixed-ligand cuboctahedral cages.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc01936aDOI Listing

Publication Analysis

Top Keywords

ligand exchange
16
solvent-free mechanochemistry
12
mechanochemistry preparation
8
preparation mixed-ligand
8
mixed-ligand cuboctahedral
8
cuboctahedral cages
8
mixed-ligand cages
8
cages
7
mixed-ligand
4
cuboctahedral porous
4

Similar Publications

Self-healing polymeric coatings represent a transformative class of smart materials capable of autonomously or stimuli-responsively repairing mechanical or environmental damage, thereby significantly extending the operational lifespan of protected substrates. This review systematically elucidates the underlying mechanisms and chemistries enabling self-healing behavior, encompassing both extrinsic strategies such as microcapsules, microvascular networks, and corrosion inhibitor reservoirs and intrinsic approaches based on dynamic covalent (e.g.

View Article and Find Full Text PDF

Elucidating the Interfacial Barriers in Lanthanide Back-Extraction: From Water to Oil and Back Again.

J Phys Chem Lett

September 2025

Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

Recovery of critical rare earth elements from complex mixtures has long been realized via solvent extraction, where ions in an aqueous phase are separated into an organic phase using amphiphilic ligands. While a great deal of effort has been placed on understanding this forward reaction, substantial knowledge gaps in the back-extraction process remain. This includes the mechanism of interfacial dissociation and transport back into a highly acidic aqueous phase for further processing.

View Article and Find Full Text PDF

Cesium-formamidinium lead triiodide perovskite quantum dots (CsFAPbI PQDs) exhibit high potential for efficient photovoltaics due to their ideal bandgap and good phase stability. However, synthesizing the CsFAPbI PQDs with tunable composition and high optoelectronic properties remains a significant challenge due to the large difference in the crystallization temperature and chemical environment between the mono-cation Cs- and FA-based PQDs. Herein, a low-temperature sequential injection (LTSI) strategy is introduced to in situ alloying CsFAPbI PQDs for efficient solar cells.

View Article and Find Full Text PDF

Fluoride (F) ions contamination significantly increased with increasing industrialization, a significant public health problem nowadays. At the same time, waste materials (WMs), such as agricultural waste, food waste, plastic waste, etc., have considerably increased with the increase in population.

View Article and Find Full Text PDF

A series of homometallic tetranuclear Ln complexes, [Ln(μ-OH){pyC(OH)O}(OCCMe)] [{pyC(OH)O} = monoanionic -diol form of di-2-pyridyl ketone; Ln = Nd (1), Eu (2), Tb (3), Dy (4), Er (5) and Yb (6)], have been synthesized and characterized. The asymmetric unit of each of the tetranuclear derivatives comprises the dinuclear motif, [Ln(μ-OH){pyC(OH)O}(OCCMe)]. The core structure of this Ln family possesses two homometallic structural subunits, LnIII3O, which are further connected through the bridging μ-OH ligands.

View Article and Find Full Text PDF