98%
921
2 minutes
20
Background: Melanoma is one of the most malignant forms of skin cancer, with a high mortality rate in the advanced stages. Therefore, early and accurate detection of melanoma plays an important role in improving patients' prognosis. Biopsy is the traditional method for melanoma diagnosis, but this method lacks reliability. Therefore, it is important to apply new methods to diagnose melanoma effectively.
Aim: This study presents a new approach to classify melanoma using deep neural networks (DNNs) with combined multiple modal imaging and genomic data, which could potentially provide more reliable diagnosis than current medical methods for melanoma.
Method: We built a dataset of dermoscopic images, histopathological slides and genomic profiles. We developed a custom framework composed of two widely established types of neural networks for analysing image data Convolutional Neural Networks (CNNs) and networks that can learn graph structure for analysing genomic data-Graph Neural Networks. We trained and evaluated the proposed framework on this dataset.
Results: The developed multi-modal DNN achieved higher accuracy than traditional medical approaches. The mean accuracy of the proposed model was 92.5% with an area under the receiver operating characteristic curve of 0.96, suggesting that the multi-modal DNN approach can detect critical morphologic and molecular features of melanoma beyond the limitations of traditional AI and traditional machine learning approaches. The combination of cutting-edge AI may allow access to a broader range of diagnostic data, which can allow dermatologists to make more accurate decisions and refine treatment strategies. However, the application of the framework will have to be validated at a larger scale and more clinical trials need to be conducted to establish whether this novel diagnostic approach will be more effective and feasible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180689 | PMC |
http://dx.doi.org/10.1111/srt.13770 | DOI Listing |
Br J Pharmacol
September 2025
Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
Background And Purpose: Neuroinflammation is increasingly recognised to contribute to drug-resistant epilepsy. Activation of ATP-gated P2X7 receptors has emerged as an important upstream mechanism, and increased P2X7 receptor expression is present in the seizure focus in rodent models and patients. Pharmacological antagonists of P2X7 receptors attenuate seizures in rodents, but this has not been explored in human neural networks.
View Article and Find Full Text PDFBehav Res Methods
September 2025
Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Cybernetics, Prague, Czech Republic.
Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts.
View Article and Find Full Text PDFNeotrop Entomol
September 2025
Dept of Entomology, Federal Univ of Viçosa, Viçosa, MG, Brazil.
The fruit fly Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) is one of the main pests in apple orchards. Artificial neural networks (ANNs) are tools with good ability to predict phenomena such as the seasonal dynamics of pest populations. Thus, the objective of this work was to determine a prediction model for the seasonal dynamics of A.
View Article and Find Full Text PDFNat Neurosci
September 2025
Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany.
Grid cells, with their periodic firing fields, are fundamental units in neural networks that perform path integration. It is widely assumed that grid cells encode movement in a single, global reference frame. In this study, by recording grid cell activity in mice performing a self-motion-based navigation task, we discovered that grid cells did not have a stable grid pattern during the task.
View Article and Find Full Text PDFBiol Pharm Bull
September 2025
Computational and Biological Learning Laboratory, University of Cambridge, Cambridge CB21PZ, United Kingdom.
Neuroimaging in rodents holds promise for advancing our understanding of the central nervous system (CNS) mechanisms that underlie chronic pain. Employing two established, but pathophysiologically distinct rodent models of chronic pain, the aim of the present study was to characterize chronic pain-related functional changes with resting-state functional magnetic resonance imaging (fMRI). In Experiment 1, we report findings from Lewis rats 3 weeks after Complete Freund's adjuvant (CFA) injection into the knee joint (n = 16) compared with the controls (n = 14).
View Article and Find Full Text PDF