98%
921
2 minutes
20
Approximately 70 % of the area highly Cs-contaminated by the Fukushima Daiichi Nuclear Power Plant accident is forested. Decontamination works in most of these forests have not progressed, and the forestry industry remains stagnant. Although the long-term dynamics of Cs in the forest ecosystem will be controlled by the amount of Cs absorbed by roots in the future, temporal changes in Cs of tree roots have rarely been reported. In the present study, we monitored the depth distribution of Cs in the soil and absorptive very fine (VF) roots of 0.5 mm or less in a Japanese cedar forest from 2011 to 2023. As a result, the Cs inventory in the mineral soil increased over time due to the migration from the forest canopy and litter layers, whereas that in the VF roots tended to decrease since 2020, although there was a large variation. Temporal decrease in the exchangeable Cs fraction with fixation and temporal increase in VF root biomass with their growth were not clearly observed, the Cs concentration in the VF roots at 0-2 cm decreased with the decrease in Cs concentration in the litter layers. Although the Cs concentration in the VF roots below 2 cm tended to increase with increasing Cs concentration in the soil at the same depth, the downward migration of Cs within the soil can reduce the amount of Cs absorbed by roots because the VF root biomass decreases exponentially with depth. In other words, Cs can be removed from the long-term active cycles of forest ecosystems as they migrate deeper into the soil. This natural migration process can be regarded as a "self-cleaning" of the forest ecosystem, the green and sustainable remediation using such self-cleaning should be actively adopted for the future forest management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.174010 | DOI Listing |
Glob Chang Biol
September 2025
Chair of Silviculture, Faculty of Environment and Natural Resources, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.
Mixed-species forests are proposed to enhance tree resistance and resilience to drought. However, growing evidence shows that tree species richness does not consistently improve tree growth responses to drought. The underlying mechanisms remain uncertain, especially under unprecedented multiyear droughts.
View Article and Find Full Text PDFGlob Chang Biol
September 2025
European Centre for Medium-Range Weather Forecast (ECMWF), Reading, UK.
The catastrophic Los Angeles Fires of January 2025 underscore the urgent need to understand the complex interplay between hydroclimatic variability and wildfire behavior. This study investigates how sequential wet and dry periods, hydroclimatic rebound events, create compounding environmental conditions that culminate in extreme fire events. Our results show that a cascade of moisture anomalies, from the atmosphere to vegetation health, precedes these fires by around 6-27 months.
View Article and Find Full Text PDFG3 (Bethesda)
September 2025
INRAE, UR629 URFM, Ecologie des Forêts Méditerranéennes, Site Agroparc, Domaine Saint Paul, F-84914 Avignon Cedex 9, France.
Symphonia globulifera (Clusiaceae) has emerged as a model organism in tropical forest ecology and evolution due to its significant ecological role and complex biogeographical history. Originating from Africa, this species has independently colonized Caribbean, Central and South America three times, becoming a key component of tropical ecosystems across these regions. Despite the ecological importance of S.
View Article and Find Full Text PDFFront Immunol
September 2025
Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
Background: People living with HIV(PLWH) are a high-risk population for cancer. We conducted a pioneering study on the gut microbiota of PLWH with various types of cancer, revealing key microbiota.
Methods: We collected stool samples from 54 PLWH who have cancer (PLWH-C), including Kaposi's sarcoma (KS, n=7), lymphoma (L, n=22), lung cancer (LC, n=12), and colorectal cancer (CRC, n=13), 55 PLWH who do not have cancer (PLWH-NC), and 49 people living without HIV (Ctrl).
iScience
September 2025
Department of Physical Geography and Ecosystem Science, Lund University, 223 62 Lund, Sweden.
Forest loss, fragmentation, and transformation negatively impact forest biodiversity and ecosystem functionality worldwide. Improving landscape intactness and connectivity through restoration is critical. Determining where to restore remains, however, a challenge.
View Article and Find Full Text PDF