Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pollen collected by pollinators can be used as a marker of the foraging behavior as well as indicate the botanical species present in each environment. Pollen intake is essential for pollinators' health and survival. During the foraging activity, some pollinators, such as honeybees, manipulate the collected pollen mixing it with salivary secretions and nectar (corbicular pollen) changing the pollen chemical profile. Different tools have been developed for the identification of the botanical origin of pollen, based on microscopy, spectrometry, or molecular markers. However, up to date, corbicular pollen has never been investigated. In our work, corbicular pollen from 5 regions with different climate conditions was collected during spring. Pollens were identified with microscopy-based techniques, and then analyzed in MALDI-MS. Four different chemical extraction solutions and two physical disruption methods were tested to achieve a MALDI-MS effective protocol. The best performance was obtained using a sonication disruption method after extraction with acetic acid or trifluoroacetic acid. Therefore, we propose a new rapid and reliable methodology for the identification of the botanical origin of the corbicular pollens using MALDI-MS. This new approach opens to a wide range of environmental studies spanning from plant biodiversity to ecosystem trophic interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271380PMC
http://dx.doi.org/10.1007/s00216-024-05368-9DOI Listing

Publication Analysis

Top Keywords

corbicular pollen
12
pollen
9
identification botanical
8
botanical origin
8
application robust
4
robust maldi
4
maldi mass
4
mass spectrometry
4
spectrometry approach
4
approach bee
4

Similar Publications

Gut microbial communities can facilitate traits that are essential for invasive species survival in novel environments. Despite the global plethora of invasive social insect species, the role of the gut microbiome in colonisation success under novel dietary and environmental conditions is little known. The introduction of the European buff-tailed bumblebee, , to the island of Tasmania (Australia) ~30 years ago is of ecological concern due to its negative impacts on native vegetation and endemic bees.

View Article and Find Full Text PDF

Honey bees are exposed to a diverse variety of microbes in the environment. Many studies have been carried out on the microbiome of bee gut, beebread, and flower pollen. However, little is known regarding the microbiome of fresh corbicular pollen, which can directly reflect microbes acquired from the environment.

View Article and Find Full Text PDF

Pollen collected by pollinators can be used as a marker of the foraging behavior as well as indicate the botanical species present in each environment. Pollen intake is essential for pollinators' health and survival. During the foraging activity, some pollinators, such as honeybees, manipulate the collected pollen mixing it with salivary secretions and nectar (corbicular pollen) changing the pollen chemical profile.

View Article and Find Full Text PDF

Honey bee abdominal lipids decline with age, a change thought to be associated with the onset of foraging behavior. Stressors, such as pesticides, may accelerate this decline by mobilizing internal lipid to facilitate the stress response. Whether bees with stressor-induced accelerated lipid loss vary from controls in both the onset of foraging and nutritional quality of collected pollen is not fully understood.

View Article and Find Full Text PDF

Nutritional stress is the major factor contributing to decline in the honey bee (Apis mellifera L.) populations given the high degree of dependence on floral resources, and due to the habitat loss. In this sense, monocultures of maize and avocado have great extensions in Mexico, but their impact on the physiology and morphology of A.

View Article and Find Full Text PDF