Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

CRISPR/Cas9 is widely used for precise mutagenesis through targeted DNA double-strand breaks (DSBs) induction followed by error-prone repair. A better understanding of this process requires measuring the rates of cutting, error-prone, and precise repair, which have remained elusive so far. Here, we present a molecular and computational toolkit for multiplexed quantification of DSB intermediates and repair products by single-molecule sequencing. Using this approach, we characterize the dynamics of DSB induction, processing and repair at endogenous loci along a 72 h time-course in tomato protoplasts. Combining this data with kinetic modeling reveals that indel accumulation is determined by the combined effect of the rates of DSB induction processing of broken ends, and precise versus error repair. In this study, 64-88% of the molecules were cleaved in the three targets analyzed, while indels ranged between 15-41%. Precise repair accounts for most of the gap between cleavage and error repair, representing up to 70% of all repair events. Altogether, this system exposes flux in the DSB repair process, decoupling induction and repair dynamics, and suggesting an essential role of high-fidelity repair in limiting the efficiency of CRISPR-mediated mutagenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178868PMC
http://dx.doi.org/10.1038/s41467-024-49410-xDOI Listing

Publication Analysis

Top Keywords

repair
12
precise repair
12
double-strand breaks
8
dsb induction
8
induction processing
8
error repair
8
precise
5
uncovering dynamics
4
dynamics precise
4
repair crispr/cas9-induced
4

Similar Publications

Background: Pressure injuries are common, difficult to manage, and carry a high economic burden. They are challenging to physicians and a burden to society.

Case Report: An 89-year-old male, who had previously undergone internal fixation with screws and rods for a right intertrochanteric fracture, developed a deep circular open ulcer measuring 11 cm × 7.

View Article and Find Full Text PDF

Background: Charcot foot is a debilitating complication of peripheral neuropathy and is primarily associated with diabetes, leading to structural damage, ulceration, and osteomyelitis. Pulsed electromagnetic field (PEMF) therapy is a promising treatment modality for wound healing and bone metabolism.

Objective: To evaluate the efficacy of PEMF therapy in promoting bone growth and ulcer healing in patients with Charcot foot ulcers.

View Article and Find Full Text PDF

Use of a novel zipper device for wound closure of cutaneous abscesses in pediatric outpatients: a case series.

Wounds

August 2025

Department of Day Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorder, Chongqing, China; China International Science and Technology Coopera

Background: Current management of pediatric cutaneous abscesses involves either spontaneous healing by secondary intention or suturing through tertiary intention, which are often lengthy processes that cause discomfort and distress among children. As it is noninvasive and simple, a novel zipper device is widely used for the primary wound closure of surgical incisions.

Objective: To describe the effectiveness of novel zipper device use for pediatric cutaneous abscess wound closure in an outpatient context.

View Article and Find Full Text PDF

Background: This retrospective analysis is a derivative cohort study based on a prior retrospective investigation by this author group.

Objective: To assess the effect of the number of cellular and/or tissue-based product (CTP) applications on healing outcomes and wound area reduction (WAR) rates in patients with chronic wounds of multiple etiologies.

Methods: Data from a multicenter private wound care practice electronic health record database were analyzed for Medicare patients receiving CTPs from January 2018 through December 2023.

View Article and Find Full Text PDF

Background: Diabetic foot ulcers (DFUs) are a major clinical challenge, particularly among patients with refractory ulcers, that often lead to severe complications such as infection, amputation, and high mortality. Innovations supported by strong clinical evidence have the potential to improve healing outcomes, enhance quality of life, and reduce the economic burden on individuals and health care systems.

Objective: To describe the design of the concurrent optical and magnetic stimulation (COMS) therapy Investigational Device Exemption (IDE) study for refractory DFUs (MAVERICKS) trial.

View Article and Find Full Text PDF