98%
921
2 minutes
20
CDKL5 deficiency disorder (CDD) is a complex clinical condition resulting from non-functional or absent CDKL5 protein, a serine-threonine kinase pivotal for neural maturation and synaptogenesis. The disorder manifests primarily as developmental epileptic encephalopathy, with associated neurological phenotypes, such as hypotonia, movement disorders, visual impairment, and gastrointestinal issues. Its prevalence is estimated at 1 in 40,000-60,000 live births, and it is more prevalent in females due to the lethality of germline mutations in males during fetal development. This Italian multi-center observational study focused on 34 patients with CDKL5-related epileptic encephalopathy, aiming to enhance the understanding of the clinical and molecular aspects of CDD. The study, conducted across 14 pediatric neurology tertiary care centers in Italy, covered various aspects, including phenotypic presentations, seizure types, EEG patterns, treatments, neuroimaging findings, severity of psychomotor delay, and variant-phenotype correlations. The results highlighted the heterogeneity of seizure patterns, with hypermotor-tonic-spasms sequence seizures (HTSS) noted in 17.6% of patients. The study revealed a lack of clear genotype-phenotype correlation within the cohort. The presence of HTSS or HTSS-like at onset resulted a negative prognostic factor for the presence of daily seizures at long-term follow-up in CDD patients. Despite extensive polypharmacotherapy, including medications such as valproic acid, clobazam, cannabidiol, and others, sustained seizure freedom proved elusive, affirming the inherent drug-resistant nature of CDD. The findings underscored the need for further research to explore response rates to different treatments and the potential role of non-pharmacological interventions in managing this challenging disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319418 | PMC |
http://dx.doi.org/10.1007/s00415-024-12421-1 | DOI Listing |
J Clin Invest
September 2025
Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome (MEDS) is a congenital disorder with two known aetiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking.
View Article and Find Full Text PDFQual Life Res
September 2025
The Kids Research Institute Australia, The University of Western Australia, P.O. Box 855, West Perth, WA, 6872, Australia.
Purpose: CDKL5 deficiency disorder (CDD) is a rare developmental and epileptic encephalopathy. Greater understanding of the smallest meaningful improvements for individuals with CDD in clinical trials and practice is needed for a person-centred approach to treatment efficacy. This study explored how parent/caregivers of people with CDD understood meaningful improvements and described change for priority functional domains including communication, gross motor, fine motor, feeding.
View Article and Find Full Text PDFNeurosurg Rev
September 2025
Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, F-75014, France.
Awake craniotomy is the gold standard to achieve maximal safe resection of brain lesions located within eloquent areas. There are no established guidelines to assess patient's eligibility for awake craniotomy by weight class. This study assesses feasibility, safety, and efficacy of awake surgery by weight classes through an observational, retrospective, single-institution cohort analysis (2010-2024) of 526 awake craniotomies.
View Article and Find Full Text PDFClin Lab
September 2025
Background: Patients with epilepsy often require long-term antiepileptic medications, which can affect hematological parameters. Influenza (H1N1) infection is known to potentially cause thrombocytopenia. This case examines the clinical implications of a 29-year-old female patient with epilepsy who developed influenza and significant platelet reduction.
View Article and Find Full Text PDFMol Genet Genomic Med
September 2025
Research Centre for Medical Genetics, Moscow, Russia.
Background: Developmental and epileptic encephalopathies (DEEs) comprise a diverse range of disorders that can arise from both genetic and non-genetic causes. Genetic DEEs are linked to pathogenic variants in various genes with different molecular functions. The wide clinical and genetic variability found in DEEs poses a considerable challenge for accurate diagnosis even with the use of comprehensive diagnostic approaches such as whole genome sequencing (WGS).
View Article and Find Full Text PDF