Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Extremely low-frequency (ELF) electromagnetic (EM) waves adeptly propagate in harsh cross-medium environments, overcoming rapid decay that hinders high-frequency counterparts. Traditional antennas, however, encounter challenges concerning size, efficiency, and power. Here, drawing inspiration from nature, we present a groundbreaking piezo-actuated, bionic flapping-wing magnetic-dipole resonator (BFW-MDR), operating in the electro-mechano-magnetic coupling mechanism, designed for efficient ELF EM wave transmission. The unique rigid-flexible hybrid flapping-wing structure magnifies rotation angles of anti-phase magnetic dipoles by tenfold, leading to constructive superposition of emitted magnetic fields. Consequently, the BFW-MDR exhibits a remarkable quality factor of 288 and an enhanced magnetic field emission of 514 fT at 100 meters with only 6.9 mW power consumption, surpassing traditional coil antennas by three orders of magnitude. The communication rate is doubled by the ASK+PSK modulation method. Its robust performance in cross-medium communication, even amidst various interferences, underscores its potential as a highly efficient antenna for underwater and underground applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321680 | PMC |
http://dx.doi.org/10.1002/advs.202403746 | DOI Listing |