98%
921
2 minutes
20
The Critical Assessment of Computational Hit-Finding Experiments (CACHE) Challenge series is focused on identifying small molecule inhibitors of protein targets using computational methods. Each challenge contains two phases, hit-finding and follow-up optimization, each of which is followed by experimental validation of the computational predictions. For the CACHE Challenge #1, the Leucine-Rich Repeat Kinase 2 (LRRK2) WD40 Repeat (WDR) domain was selected as the target for hit-finding and optimization. Mutations in LRRK2 are the most common genetic cause of the familial form of Parkinson's disease. The LRRK2 WDR domain is an understudied drug target with no known molecular inhibitors. Herein we detail the first phase of our winning submission to the CACHE Challenge #1. We developed a framework for the high-throughput structure-based virtual screening of a chemically diverse small molecule space. Hit identification was performed using the large-scale Deep Docking (DD) protocol followed by absolute binding free energy (ABFE) simulations. ABFEs were computed using an automated molecular dynamics (MD)-based thermodynamic integration (TI) approach. 4.1 billion ligands from Enamine REAL were screened with DD followed by ABFEs computed by MD TI for 793 ligands. 76 ligands were prioritized for experimental validation, with 59 compounds successfully synthesized and 5 compounds identified as hits, yielding a 8.5% hit rate. Our results demonstrate the efficacy of the combined DD and ABFE approaches for hit identification for a target with no previously known hits. This approach is widely applicable for the efficient screening of ultra-large chemical libraries as well as rigorous protein-ligand binding affinity estimation leveraging modern computational resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168082 | PMC |
http://dx.doi.org/10.1039/d3sc06880c | DOI Listing |
Commun Biol
July 2025
Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.
Human DCAF1 is a multidomain protein that plays a critical role in protein homeostasis. Its WDR domain functions as a substrate recruitment module for RING-type CRL4 and HECT family EDVP E3 ubiquitin ligases, enabling the ubiquitination and proteasomal degradation of specific substrates. DCAF1's activity has been implicated in cell proliferation and is documented to promote tumorigenesis.
View Article and Find Full Text PDFJ Chem Inf Model
June 2025
Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
The leucine-rich repeat kinase 2 (LRRK2) is the most mutated gene in familial Parkinson's disease, and its mutations lead to pathogenic hallmarks of the disease. The LRRK2 WDR domain is an understudied drug target for Parkinson's disease, with no known inhibitors prior to the first phase of the Critical Assessment of Computational Hit-Finding Experiments (CACHE) Challenge. A unique advantage of the CACHE Challenge is that the predicted molecules are experimentally validated in-house.
View Article and Find Full Text PDFPLoS Genet
May 2025
The University of Texas at Arlington, Arlington, Texas, United States of America.
Cells may be intrinsically fated to die to sculpt tissues during development or to maintain homeostasis. Cells can also die in response to various stressors, injury or pathological conditions. Additionally, cells of the metazoan body are often highly specialized with distinct domains that differ both structurally and with respect to their neighbors.
View Article and Find Full Text PDFChem Sci
February 2025
University of Missouri - Columbia, Department of Chemistry USA
Critical Assessment of Computational Hit-Finding Experiments (CACHE) Challenges emerged as real-life stress tests for computational hit-finding strategies. In CACHE Challenge #1, 23 participants contributed their original workflows to identify small-molecule ligands for the WD40 repeat (WDR) of LRRK2, a promising Parkinson's target. We applied the FRASE-based hit-finding robot (FRASE-bot), a platform for interaction-based screening allowing a drastic reduction of the explorable chemical space and a concurrent detection of putative ligand-binding sites.
View Article and Find Full Text PDFEBioMedicine
December 2024
The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia. Electronic address: