Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Critical Assessment of Computational Hit-Finding Experiments (CACHE) Challenge series is focused on identifying small molecule inhibitors of protein targets using computational methods. Each challenge contains two phases, hit-finding and follow-up optimization, each of which is followed by experimental validation of the computational predictions. For the CACHE Challenge #1, the Leucine-Rich Repeat Kinase 2 (LRRK2) WD40 Repeat (WDR) domain was selected as the target for hit-finding and optimization. Mutations in LRRK2 are the most common genetic cause of the familial form of Parkinson's disease. The LRRK2 WDR domain is an understudied drug target with no known molecular inhibitors. Herein we detail the first phase of our winning submission to the CACHE Challenge #1. We developed a framework for the high-throughput structure-based virtual screening of a chemically diverse small molecule space. Hit identification was performed using the large-scale Deep Docking (DD) protocol followed by absolute binding free energy (ABFE) simulations. ABFEs were computed using an automated molecular dynamics (MD)-based thermodynamic integration (TI) approach. 4.1 billion ligands from Enamine REAL were screened with DD followed by ABFEs computed by MD TI for 793 ligands. 76 ligands were prioritized for experimental validation, with 59 compounds successfully synthesized and 5 compounds identified as hits, yielding a 8.5% hit rate. Our results demonstrate the efficacy of the combined DD and ABFE approaches for hit identification for a target with no previously known hits. This approach is widely applicable for the efficient screening of ultra-large chemical libraries as well as rigorous protein-ligand binding affinity estimation leveraging modern computational resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168082PMC
http://dx.doi.org/10.1039/d3sc06880cDOI Listing

Publication Analysis

Top Keywords

wdr domain
12
cache challenge
12
lrrk2 wdr
8
deep docking
8
free energy
8
small molecule
8
experimental validation
8
hit identification
8
abfes computed
8
screening lrrk2
4

Similar Publications

Human DCAF1 is a multidomain protein that plays a critical role in protein homeostasis. Its WDR domain functions as a substrate recruitment module for RING-type CRL4 and HECT family EDVP E3 ubiquitin ligases, enabling the ubiquitination and proteasomal degradation of specific substrates. DCAF1's activity has been implicated in cell proliferation and is documented to promote tumorigenesis.

View Article and Find Full Text PDF

The leucine-rich repeat kinase 2 (LRRK2) is the most mutated gene in familial Parkinson's disease, and its mutations lead to pathogenic hallmarks of the disease. The LRRK2 WDR domain is an understudied drug target for Parkinson's disease, with no known inhibitors prior to the first phase of the Critical Assessment of Computational Hit-Finding Experiments (CACHE) Challenge. A unique advantage of the CACHE Challenge is that the predicted molecules are experimentally validated in-house.

View Article and Find Full Text PDF

Cells may be intrinsically fated to die to sculpt tissues during development or to maintain homeostasis. Cells can also die in response to various stressors, injury or pathological conditions. Additionally, cells of the metazoan body are often highly specialized with distinct domains that differ both structurally and with respect to their neighbors.

View Article and Find Full Text PDF

Critical Assessment of Computational Hit-Finding Experiments (CACHE) Challenges emerged as real-life stress tests for computational hit-finding strategies. In CACHE Challenge #1, 23 participants contributed their original workflows to identify small-molecule ligands for the WD40 repeat (WDR) of LRRK2, a promising Parkinson's target. We applied the FRASE-based hit-finding robot (FRASE-bot), a platform for interaction-based screening allowing a drastic reduction of the explorable chemical space and a concurrent detection of putative ligand-binding sites.

View Article and Find Full Text PDF
Article Synopsis
  • Ongoing research is essential for tracking and understanding the emergence of new SARS-CoV-2 variants, particularly as diagnostic testing declines in Australia during the COVID-19 pandemic.
  • In 2023, collaborations with pathology and genomics teams allowed for the monitoring of SARS-CoV-2 variants in New South Wales through various methods, including viral culture and analysis of immune responses from a large pool of blood donations.
  • Findings indicated that while existing antibodies generally neutralized many variants, specific mutations in emerging strains, particularly JN.1, suggested future challenges in controlling their spread due to enhanced transmissibility.
View Article and Find Full Text PDF