A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

XBAT31 regulates reproductive thermotolerance through controlling the accumulation of HSFB2a/B2b under heat stress conditions. | LitMetric

XBAT31 regulates reproductive thermotolerance through controlling the accumulation of HSFB2a/B2b under heat stress conditions.

Cell Rep

State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China. Electronic address:

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Heat shock transcription factors (HSFs) play a crucial role in heat stress tolerance in vegetative tissues. However, their involvement in reproductive tissues and their post-translational modifications are not well understood. In this study, we identify the E3 ligase XB3 ORTHOLOG 1 IN ARABIDOPSIS THALIANA (XBAT31) as a key player in the ubiquitination and degradation of HSFB2a/B2b. Our results show that the xbat31 mutant exhibits a higher percentage of unfertile siliques and decreased expression of HSPs in flowers under heat stress conditions compared to the wild type. Conversely, the hsfb2a hsfb2b double mutant displays improved reproductive thermotolerance. We find that XBAT31 interacts with HSFB2a/B2b and mediates their ubiquitination. Furthermore, HSFB2a/B2b ubiquitination is reduced in the xbat31-1 mutant, resulting in higher accumulation of HSFB2a/B2b in flowers under heat stress conditions. Overexpression of HSFB2a or HSFB2b leads to an increase in unfertile siliques under heat stress conditions. Thus, our results dissect the important role of the XBAT31-HSFB2a/B2b module in conferring reproductive thermotolerance in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2024.114349DOI Listing

Publication Analysis

Top Keywords

heat stress
20
stress conditions
16
reproductive thermotolerance
12
accumulation hsfb2a/b2b
8
unfertile siliques
8
flowers heat
8
hsfb2a hsfb2b
8
heat
6
hsfb2a/b2b
5
stress
5

Similar Publications